
Compilers
The graduate version - Spring 2020



Goals

• To become knowledgeable of the foundational concepts underlying 
modern compiler optimization

• To explore and understand the tradeoffs required when implementing 
scalable program analyses

• To become familiar with a production-quality compiler system that 
you can use in your own research



A bit about me …

• Worked as a compiler developer in industry from 1986-1990
• Doctoral work on data flow analysis
• Have taken three courses in compilers (all grad courses)
• Have taught undergrad and graduate compilers 20 times
• 5 different instantiations of the course

• Have implemented significant parts of 7 compilers
• Most recently this summer (as you will see)

• Lead research on topics that are closely related to compilation



From theory to normal engineering

• in the 1960s compilation was art
• in the 1970s compilation was theory, i.e., studied by theoreticians
• in the 1980s and 90s compilation was engineering, i.e., studied as a 

software product line, supported by reusable programming 
frameworks and DSLs
• in the 2000s those frameworks became more powerful
• in the 2010s we finally figured out how to test them
• it is one of the most mature software domains you will ever 

encounter



What is a compiler?

Compilerprogram.c a.out



Front-endprogram.c

a.out

Middle-end

Back-end



program.c

a.out

Middle-end

Back-end

Scan Parse Weed

Type Symbol

Front-end



program.c

a.out

Middle-end

Scan Parse Weed

Type Symbol

Front-end

Peephole

Code Gen Resource

EmitBa
ck
-e
nd



Scan Parse Weed

Type Symbol

Scan Parse Weed

Type Symbol

program.c

a.out

Middle-end

Scan Parse Weed

Type Symbol

Front-end

Peephole

Code Gen Resource

EmitBa
ck
-e
nd

per Source Language



Peephole

Code Gen Resource

EmitPeephole

Code Gen Resource

Emit

Scan Parse Weed

Type Symbol

Scan Parse Weed

Type Symbol

program.c

a.out

Middle-end

Scan Parse Weed

Type Symbol

Front-end

Peephole

Code Gen Resource

EmitBa
ck
-e
nd

per Source Language

pe
r S

ou
rce

 La
ng

ua
ge



Compilers are …

• Large complex software systems
• GCC >7MSLOC
• CLANG+LLVM >4MSLOC

• Highly-structured software architectures
• Well-defined interfaces
• Components modularized and plug compatible

• Focused on the input and output languages, e.g., for GCC
• C, C++, Objective C, Ada, Fortran, Go, D, Cobol, Modula-2/3, …
• arm, alpha, i386, mips, rs6000, sparc, … (51 currently)

• We are going to side-step a lot of that complexity



program.c

a.out

Middle-end

Scan Parse Weed

Type Symbol

Front-end

Peephole

Code Gen Resource

EmitBa
ck
-e
nd



program.c

a.out

Scan Parse

Type Symbol

Front-end

Code Gen

Ba
ck

-e
nd

Undergraduate Compilers



Middle-end

Type

Front-end
Ba

ck
-e

nd

This Class



Middle-end

Type

Static Program Analysis 

IR

IR

IR+invariants

IR+invariants

Intermediate Representation Facts about program 
behavior that always hold



Middle-end

Type

Static Program Analysis 

IR

IR

IR+invariants

IR+invariants

abstract syntax tree, 
symbol table, …

control flow graph, 
dependence graph, 
call graph, …

x+y is always z-10
p and q never point to the same memory
foo() is always called with positive args

x is an “integer”
foo(x) returns an “integer”



Compilers in three parts
• Theory in a controlled environment
• TIP – Tiny Imperative Language
• Scala implementation of interpreter and analyses (with holdbacks)

• Practice in the wild
• tipc a compiler from (a subset of) TIP to LLVM bitcode
• Yours to extend in a class project

• Prompts to drive your exploration and learning
• Analysis passes in LLVM



A degree of independence will be required
• Theory in a controlled environment

• TIP is 4500 SLOC of Scala

• Much of it you will not need to touch or even look at

• 46 lines marked “??? //<--- Complete here”

• Practice in the wild

• tipc is about 1000 SLOC of C++

• Makes heavy use of LLVM APIs and coding idioms (smart pointers)

• Uses ANTLR4 grammar and custom visitors for AST construction and code-gen

• There is no TA

• I can be of help for many issues (I implemented tipc)

• I don’t use IDEs, so I can’t help with that, but I hear they are great 


