Static Program Analysis
Part 1 —the TIP language

http://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael I. Schwartzbach
Computer Science, Aarhus University

http://cs.au.dk/~amoeller/spa/

Questions about programs

Does the program terminate on all inputs?

How large can the heap become during execution?

Can sensitive information leak to non-trusted users?

Can non-trusted users affect sensitive information?

Are buffer-overruns possible? . \

Data races?

SQL injections? 7) '

XSS? 5
-

rs

-

Program points

foo(p,x) {
var f,q;

it (Fp==0) { f=1; }
else { any point in the program

q = malloc; /:any value of the PC
7's‘q — (7'\‘p)_1;

f=C*p)*(x(q,x));
}

return f;

Invariants:

A property holds at a program point if it holds in any
such state for any execution with any input

Questions about program points

Will t
Cant
Whic

ne value of X be read in the future?
ne pointer p be nul1?

n variables can p point to?

Is the variable X initialized before it is read?

What is a lower and upper bound on the value of the
integer variable x?

At which program points could X be assighed its
current value?

Do p

and g point to disjoint structures in the heap?

Can this assert statement fail?

Why are the answers interesting?

Increase efficiency

— resource usage
— compiler optimizations

Ensure correctness

— verify behavior
— catch bugs early

Support program understanding
Enable refactorings

Testing?

“Program testing can be used to show
the presence of bugs, but never to show
their absence.”

[Dijkstra, 1972]

e Testing often takes 50% of development cost

* Errors in concurrent/distributed systems are hard to
(re)produce with testing (“Heisenbugs”)

Programs that reason about programs

a program analyzer A

a program P

Requirements to the perfect program analyzer

3
) SOUNDNESS (don’t miss any errors)
J°) COMPLETENESS (don’t raise false alarms)

S50 TERMINATION (always give an answer)

Rice’s theorem, 1953

CLASSES OF RECURSIVELY ENUMERABLE SETS
AND THEIR DECISION PROBLEMS(})

BY
H. G. RICE

1. Introduction. In this paper we consider classes whose elements are re-
cursively enumerable sets of non-negative integers. No discussion of recur-
sively enumerable sets can avoid the use of such classes, so that it seems de-
sirable to know some of their properties. We give our attention here to the
properties of complete recursive enumerability and complete recursiveness
(which may be intuitively interpreted as decidability). Perhaps our most
interesting result (and the one which gives this paper its name) is the fact
that no nontrivial class is completely recursive.

We assume familiarity with a paper of Kleene [5](?), and with ideas
which are well summarized in the first sections of a paper of Post [7].

I. FUNDAMENTAL DEFINITIONS

2. Partial recursive functions. We shall characterize recursively enumer-

—

CoroLLARY B. There are no nontrivial c.r. classes by the strong definition.

Rice’s theorem

Any non-trivial property of the behavior of programs
in a Turing-complete language is undecidable!

10

Reduction to the halting problem

e Can we decide if a variable has a constant value?

x =17; 1f (OMM(j)) x = 18;

* Here, X is constant if and only if the j'th Turing
machine does not halt on empty input

11

Approximation

Approximate answers may be decidable!

The approximation must be conservative:
— i.e. only err on “the safe side”
— which direction depends on the client application

We'll focus on decision problems
More subtle approximations if not only “yes”/“no”

— e.g. memory usage, pointer targets

13

False positives and false negatives

S AT VIIU'

(false Negative)

 (false positive)

14

Example approximations

* Decide if a given function is ever called at runtime:

— if “no”, remove the function from the code
— if “yes”, don’t do anything

— the “no” answer must always be correct if given

e Decide if a cast (A)X will always succeed:
— if “yes”, don’t generate a runtime check
— if “no”, generate code for the cast

— the “yes” answer must always be correct if given

15

Beyond “yes”/“no” problems

 How much memory / time may be used in any
execution?

* Which variables may be the targets of a pointer
variable p?

16

The engineering challenge

A correct but trivial approximation algorithm may just
give the useless answer every time

The engineering challenge is to give the useful answer
often enough to fuel the client application

... and to do so within reasonable time and space

This is the hard (and fun) part of static analysis!

17

Bug finding

int main() {
char *p,*q;
p = NULL;
printf("%s",p);
g = (char *)malloc(100);
P =4q;
free(q);
7":p — 'X';
free(p);
p = (char *)malloc(100);
p = (char *)malloc(100);
qa = p;
strcat(p,q);

gcc -wall foo.c

1int foo.c
No errorsl!

18

Does sullwarﬂ ne“ Uber Engineering

POSTED ON SEP 6, 2017 TO ANDROID, DEVELOPE

LS, 10

Finding inter-p
Infer static ana

\
@1 SAM BLACKSHEAR "@ DIN
| LILY HAY NEWMAN SECURITY D8.15.19 0S5:03 PM

S 0N EEBOOR (AT
procesal g, or ugs vt [BUGBWIN TS 100 MILLION
Yeae alooka o ampes LINES OF CODE

the tools mentioned above, which pg
Analyzer — only intra-file analysis (p

unit, a file-with-includes). n

Inter-procedural bugs are significant
Facebook developers have fixed tho E
can have a large impact; we include
Facebook. As we have found, inter-g
codebases that consist of millions of 118168181B16818

a MafMmanma

How Facebook Catches Bugs in Its 100 Million

BUSINESS CULTURE GEAR IDEAS

A constraint-based approach

Conceptually separates the analysis specification
from algorithmic aspects and implementation details

public
public

}
}

class Matrix {

static void main(String[] args) {
int arr[][]l=new int[3]1[3];
System.out.println("Enter nine elements");
Scanner sc=new Scanner (System.in);
for(int i=0;i<arr.length;i++)
{

e
for (int j=0;j<arr.length;j++) ’ v
{ . E
arr[il [j]1=sc.nextInt() ; 1
} "
}
int sum=0;
for (int i = 0; i < arr.length; i++) ¢ -
-
1

sum = sum + arr[i] [j];
1}
System.out.println(sum) ;

for (int j = 0; j < arr.length; j++) {
constraint

if (1 = 3Jj)
solver

program to analyze o] = &int

[a] = &int
[alloc] = &int
N x] = ¢

[foo] = ¢

[&n] = &int
[main] = ()->int

solution

mathematical
constraints

20

Challenging features in
modern programming language

Higher-order functions

Mutable records or objects, arrays
Integer or floating-point computations
Dynamic dispatching

Inheritance

Exceptions

Reflection

21

The TIP language

e Tiny Imperative Programming language

 Example language used in this course:
— minimal C-style syntax
— cut down as much as possible
— enough features to make static analysis challenging and fun

* Scala implementation available

22

Expressions

E— |

X

E+E | E-E | E*E | E/E | EB>E | E==
(E)

1nput

E

| represents an integer constant

X represents an identifier (x, y, z,...)

1nput expression reads an integer from the input stream
comparison operators yield O (false) or 1 (true)

23

Statements

S—> X=E,
outputE,
SS

if (B) {S} [else {sS}]°
while (E) {S}

* |n conditions, O is false, all other values are true

* The output statement writes an integer value to the
output stream

24

Functions

Functions take any number of arguments and
return a single value:

F> X(X, ..., X){
[varXx, .., x;]°
S
returnE;

¥

The optional var block declares a collection of
uninitialized variables

Function calls are an extra kind of expressions:

E— X(CE, .., E)

25

E—>1X:E, ..., XIE

26

Heap pointers

E—allocE
&X

w E

null

S—> *X=E,

(No pointer arithmetic)

27

Function pointers

Function names denote function pointers

Generalized function calls:

E—ECE, .., E)

Function pointers suffice to illustrate the
main challenges with methods and
higher-order functions

28

Programs

* A program is a collection of functions

 The function named main initiates execution
— its arguments are taken from the input stream
— its result is placed on the output stream

 We assume that all declared identifiers are unique

P—>F..F

29

An iterative factorial function

1te(n) {
var f;
f =1;
while (n>0) {
© = TFR:
h = n-1;
}

return f;

30

A recursive factorial function

rec(n) {

var f;

1f (n==0) {
=1;

} else {
f=n*rec(n-1);

¥

return f;

31

An unnecessarily complicated function

main() {
foo(p,x) { var n;
var f,q; n = 1nput;
if (*p==0) { return foo(&n,foo);
f=1; ¥
} else { I
qg = alloc 0;
*q = (¥p)-1;
F=C4p) * (x(4,0) 3
}
return f;

¥

32

Beyond TIP

Other common language features
in mainstream languages:

* global variables
* objects
* nested functions

33

Control flow graphs

1ite(n) {
var f;
f =1;
while (n>0) {
f = f*n;
n n-1;
}

return f;

}

false

return f

i

34

Control flow graphs

* A control flow graph (CFG) is a directed graph:

— nodes correspond to program points
(either immediately before or after statements)

— edges represent possible flow of control

* A CFG always has
— a single point of entry
— a single point of exit
(think of them as no-op statements)
* LetvbeanodeinaCFG
— pred(v) is the set of predecessor nodes
— succ(v) is the set of successor nodes

35

* For the simple wh1 1 e fragment of TIP,

CFG construction (1/3)

CFGs are constructed inductively

* CFGs for simple statements etc.:

?

W

output £

returnék

var X

36

CFG construction (2/3)

For a statement sequence $; S,:

— eliminate the exit node of S; and the entry node of S,
— glue the statements together

¥
Y v }
5
v lv I
! 5; | ,
5;
U U
L

37

CFG construction (3/3)

Similarly for the other control structures:

E
false
true false
5; 5,

38

Normalization

e Sometimes convenient to assume that
there are no nested expressions

 Normalization: flatten nested expressions,
using fresh variables

tl = y+3;
X = f(y+3)*5; — t2 = f(tl);
X = t2*5;

39

