
Anders Møller & Michael I. Schwartzbach
Computer Science, Aarhus University

Static Program Analysis
Part 1 – the TIP language

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Questions about programs

• Does the program terminate on all inputs?
• How large can the heap become during execution?
• Can sensitive information leak to non-trusted users?
• Can non-trusted users affect sensitive information?
• Are buffer-overruns possible?
• Data races?
• SQL injections?
• XSS?
• …

2

foo(p,x) {

var f,q;

if (*p==0) { f=1; }

else {

q = malloc;

*q = (*p)-1;

f=(*p)*(x(q,x));

}

return f;

}

Program points

Invariants:
A property holds at a program point if it holds in any
such state for any execution with any input

any point in the program
= any value of the PC

3

Questions about program points

• Will the value of x be read in the future?
• Can the pointer p be null?
• Which variables can p point to?
• Is the variable x initialized before it is read?
• What is a lower and upper bound on the value of the

integer variable x?
• At which program points could x be assigned its

current value?
• Do p and q point to disjoint structures in the heap?
• Can this assert statement fail?

4

Why are the answers interesting?

• Increase efficiency
– resource usage
– compiler optimizations

• Ensure correctness
– verify behavior
– catch bugs early

• Support program understanding
• Enable refactorings

5

Testing?

6

“Program testing can be used to show
the presence of bugs, but never to show
their absence.”

[Dijkstra, 1972]

• Testing often takes 50% of development cost
• Errors in concurrent/distributed systems are hard to

(re)produce with testing (“Heisenbugs”)

a program analyzer A

a program P
P always
works
correctly

P fails
for some
inputs

Programs that reason about programs

7

SOUNDNESS (don’t miss any errors)

COMPLETENESS (don’t raise false alarms)

TERMINATION (always give an answer)

Requirements to the perfect program analyzer

Rice’s theorem, 1953

9

Rice’s theorem

Any non-trivial property of the behavior of programs
in a Turing-complete language is undecidable!

10

Reduction to the halting problem

• Can we decide if a variable has a constant value?

• Here, x is constant if and only if the j’th Turing
machine does not halt on empty input

11

x = 17; if (TM(j)) x = 18;

Approximation

• Approximate answers may be decidable!

• The approximation must be conservative:
– i.e. only err on “the safe side”
– which direction depends on the client application

• We'll focus on decision problems
• More subtle approximations if not only “yes”/“no”
– e.g. memory usage, pointer targets

13

False positives and false negatives

14

Example approximations

• Decide if a given function is ever called at runtime:
– if “no”, remove the function from the code
– if “yes”, don’t do anything
– the “no” answer must always be correct if given

• Decide if a cast (A)x will always succeed:
– if “yes”, don’t generate a runtime check
– if “no”, generate code for the cast
– the “yes” answer must always be correct if given

15

Beyond “yes”/“no” problems

• How much memory / time may be used in any
execution?

• Which variables may be the targets of a pointer
variable p?

16

The engineering challenge

• A correct but trivial approximation algorithm may just
give the useless answer every time

• The engineering challenge is to give the useful answer
often enough to fuel the client application

• ... and to do so within reasonable time and space

• This is the hard (and fun) part of static analysis!

17

Bug finding

gcc –Wall foo.c
lint foo.c

No errors!

18

int main() {

char *p,*q;

p = NULL;

printf("%s",p);

q = (char *)malloc(100);

p = q;

free(q);

*p = 'x';

free(p);

p = (char *)malloc(100);

p = (char *)malloc(100);

q = p;

strcat(p,q);

}

Does anyone use static program analysis?
For optimization:
• every optimizing compiler and modern JIT

For verification or error detection:
•
•

•
•
•
•

19

•

•

•

•

A constraint-based approach

20

mathematical
constraints

solution

constraint
solver

⟦p⟧ = &int
⟦q⟧ = &int
⟦alloc⟧ = &int
⟦x⟧ = f
⟦foo⟧ = f
⟦&n⟧ = &int
⟦main⟧ = ()->int

program to analyze

Conceptually separates the analysis specification
from algorithmic aspects and implementation details

Challenging features in
modern programming language

• Higher-order functions
• Mutable records or objects, arrays
• Integer or floating-point computations
• Dynamic dispatching
• Inheritance
• Exceptions
• Reflection
• …

21

The TIP language

• Tiny Imperative Programming language

• Example language used in this course:
– minimal C-style syntax
– cut down as much as possible
– enough features to make static analysis challenging and fun

• Scala implementation available

22

Expressions

• I represents an integer constant
• X represents an identifier (x, y, z,…)
• input expression reads an integer from the input stream
• comparison operators yield 0 (false) or 1 (true)

23

E ® I
| X
| E+E | E–E | E*E | E/E | E>E | E==E
| (E)
| input

Statements

24

S ® X = E;
| output E;
| S S
|
| if (E) { S } [else { S }]?

| while (E) { S }

• In conditions, 0 is false, all other values are true
• The output statement writes an integer value to the

output stream

Functions
• Functions take any number of arguments and

return a single value:

• The optional var block declares a collection of
uninitialized variables

• Function calls are an extra kind of expressions:

25

F ® X (X, ..., X) {
[var X, ..., X;]?

S
return E;

}

E ® X (E, ..., E)

Records

26

E® { X:E, …, X:E }
| E.X

Heap pointers

(No pointer arithmetic)

27

E® alloc E
| &X
| *E
| null

S® *X = E;

Function pointers

• Function names denote function pointers

• Generalized function calls:

• Function pointers suffice to illustrate the
main challenges with methods and
higher-order functions

28

E ® E(E, ..., E)

Programs

• A program is a collection of functions
• The function named main initiates execution
– its arguments are taken from the input stream
– its result is placed on the output stream

• We assume that all declared identifiers are unique

29

P® F ... F

An iterative factorial function

30

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

A recursive factorial function

31

rec(n) {

var f;

if (n==0) {

f=1;

} else {

f=n*rec(n-1);

}

return f;

}

An unnecessarily complicated function

32

foo(p,x) {

var f,q;

if (*p==0) {

f=1;

} else {

q = alloc 0;

*q = (*p)-1;

f=(*p)*(x(q,x));

}

return f;

}

main() {

var n;

n = input;

return foo(&n,foo);

}

Beyond TIP

Other common language features
in mainstream languages:
• global variables
• objects
• nested functions
• …

33

Control flow graphs

var f

f=1

n>0

f=f*n

n=n-1

return f

34

ite(n) {
var f;
f = 1;
while (n>0) {

f = f*n;
n = n-1;

}
return f;

}

true

false

Control flow graphs
• A control flow graph (CFG) is a directed graph:
– nodes correspond to program points

(either immediately before or after statements)
– edges represent possible flow of control

• A CFG always has
– a single point of entry
– a single point of exit
(think of them as no-op statements)

• Let v be a node in a CFG
– pred(v) is the set of predecessor nodes
– succ(v) is the set of successor nodes

35

CFG construction (1/3)

• For the simple while fragment of TIP,
CFGs are constructed inductively

• CFGs for simple statements etc.:

X = E output E return E var X

36

CFG construction (2/3)

For a statement sequence S1 S2:
– eliminate the exit node of S1 and the entry node of S2
– glue the statements together

S1 S2

S1

S2

37

CFG construction (3/3)

Similarly for the other control structures:

E

S

E

S1 S2

E

S

38

true false true
falsefalse

true

Normalization

• Sometimes convenient to assume that
there are no nested expressions

• Normalization: flatten nested expressions,
using fresh variables

39

x = f(y+3)*5;
t1 = y+3;
t2 = f(t1);
x = t2*5;

