
Anders Møller & Michael I. Schwartzbach
Computer Science, Aarhus University

Static Program Analysis
Part 2 – type analysis and unification

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Type errors

• Reasonable restrictions on operations:
– arithmetic operators apply only to integers
– comparisons apply only to like values
– only integers can be input and output
– conditions must be integers
– only functions can be called
– the * operator applies only to pointers
– field lookup can only be performed on records

• Violations result in runtime errors

2

Type checking

• Can type errors occur during runtime?
• This is interesting, hence instantly undecidable

• Instead, we use conservative approximation
– a program is typable if it satisfies some type constraints
– these are systematically derived from the syntax tree
– if typable, then no runtime type errors occur
– but some programs will be unfairly rejected (slack)

• What we shall see next is the essence of the
Damas–Hindley–Milner type inference technique,
which forms the basis of the type systems of e.g. ML, OCaml, and Haskell

3

Typability

typableno type errors

slack

4

Fighting slack

• Make the type checker a bit more clever:

• An eternal struggle

5

Fighting slack

• Make the type checker a bit more clever:

• An eternal struggle
• And a great source of publications

6

Be careful out there

• The type checker may be unsound:

• Example: covariant arrays in Java
– a deliberate pragmatic choice

7

Generating and solving constraints

AST

constraints

solution

solver
(unification)

8

⟦p⟧ = &int
⟦q⟧ = &int
⟦alloc 0⟧ = &int
⟦x⟧ = f
⟦foo⟧ = f
⟦&n⟧ = &int
⟦main⟧ = ()->int

Types

• Types describe the possible values:

• These describe integers, pointers, functions,
and records

• Types are terms generated by this grammar
– example: (int,&int) -> &&int

9

t ® int

| &t
| (t, ..., t) -> t
| { X:t, ..., X:t }

Type constraints
• We generate type constraints from an AST:

– all constraints are equalities
– they can be solved using a unification algorithm

• Type variables:
– for each identifier declaration X we have the variable ⟦X⟧
– for each non-identifier expression E we have the variable ⟦E⟧

• Recall that all identifiers are unique
• The expression E denotes an AST node, not syntax

• (Possible extensions: polymorphism, subtyping, …)
10

Generating constraints (1/3)

11

I: ⟦I⟧ = int
E1 op E2: ⟦E1⟧ = ⟦E2⟧ = ⟦E1 op E2⟧ = int
E1 == E2: ⟦E1⟧ = ⟦E2⟧ Ù ⟦E1==E2⟧ = int
input: ⟦input⟧ = int
X = E: ⟦X⟧ = ⟦E⟧
output E: ⟦E⟧ = int
if (E) {S}: ⟦E⟧ = int
if (E) {S1} else {S2}: ⟦E⟧ = int
while (E) {S}: ⟦E⟧ = int

Generating constraints (2/3)

12

X(X1,...,Xn){ ... return E; }:
⟦X⟧ = (⟦X1⟧, ..., ⟦Xn⟧) -> ⟦E⟧

E(E1, ..., En):
⟦E⟧ = (⟦E1⟧, ..., ⟦En⟧) -> ⟦E(E1, ..., En)⟧

alloc E: ⟦alloc E⟧ = &⟦E⟧
&X: ⟦&X⟧ = &⟦X⟧
null: ⟦null⟧ = &a
*E: ⟦E⟧ = &⟦*E⟧
*X = E: ⟦X⟧ = &⟦E⟧

(each a is a fresh type variable)

Generating constraints (3/3)

13

{X1:E1, ..., Xn:En}:
⟦{X1:E1, ..., Xn:En}⟧ = { X1:⟦E1⟧, ..., Xn:⟦En⟧ }

E.X: ⟦E⟧ = { ..., X:⟦E.X⟧, ... }

This is the idea, but not directly expressible in our language of types

Generating constraints (3/3)

14

{X1:E1, ..., Xn:En}: ⟦{X1:E1, ..., Xn:En}⟧ = { f1:γ1, ..., fm: γm }

where γi =

E.X: ⟦E⟧= { f1:γ1, ..., fm: γm }

where γi =

Let {f1, f2, …, fm} be the set of field names that appear in
the program

⟦Ei⟧ if fi = Xj for some j
αi otherwise

⟦E.X⟧ if fi = X
αi otherwise

Exercise

• Generate and solve the constraints
• Then try with y = alloc 8 replaced by y = 42
• Also try with the Scala implementation (when it’s completed) 15

main() {

var x, y, z;

x = input;

y = alloc 8;

*y = x;

z = *y;

return x;

}

General terms

Constructor symbols:
• 0-ary: a, b, c
• 1-ary: d, e
• 2-ary: f, g, h
• 3-ary: i, j, k

Terms:
• a
• d(a)
• h(a,g(d(a),b))

Terms with variables:
• f(X,b)
• h(X,g(Y,Z))

16

Ex: int

Ex: &t

Ex: (t1,t 2)->t 3

The unification problem

• An equality between two terms with variables:

k(X,b,Y) = k(f(Y,Z),Z,d(Z))

• A solution (a unifier) is an assignment from variables
to closed terms that makes both sides equal:

X = f(d(b),b)
Y = d(b)
Z = b

17

Implicit constraint for term equality:
c(t1,…,tk) = c(t1’,…,tk’) Þ ti = ti’ for all i

Unification errors

• Constructor error:

d(X) = e(X)

• Arity error:

a = a(X)

18

The linear unification algorithm

• Paterson and Wegman (1978)
• In time O(n):

– finds a most general unifier
– or decides that none exists

• Can be used as a back-end for type checking

• ... but only for finite terms

19

Recursive data structures
The program

creates these constraints

which have this “recursive solution” for p:
⟦p⟧ = a where a = &a

20

var p;

p = alloc null;

*p = p;

⟦null⟧ = &a
⟦alloc null⟧ = &⟦null⟧
⟦p⟧ = ⟦alloc null⟧
⟦p⟧ = &⟦p⟧

Regular terms

• Infinite but (eventually) repeating:

– e(e(e(e(e(e(...))))))
– d(a,d(a,d(a, ...)))
– f(f(f(f(...),f(...)),f(f(...),f(...))),f(f(f(...),f(...)),f(f(...),f(...))))

• Only finitely many different subtrees

• A non-regular term:

– f(a,f(d(a),f(d(d(a)),f(d(d(d(a))),...))))

21

Regular unification

• Huet (1976)
• The unification problem for regular terms

can be solved in O(n⋅	A(n))
using a union-find algorithm

• A(n) is the inverse Ackermann function:
– smallest k such that n £ Ack(k,k)
– this is never bigger than 5 for any real value of n

• See the TIP implementation...

22

Union-Find

23

makeset(x) {
x.parent := x
x.rank := 0

}

find(x) {
if x.parent != x

x.parent := find(x.parent)
return x.parent

}

union(x, y) {
xr := find(x)
yr := find(y)
if xr = yr

return
if xr.rank < yr.rank

xr.parent := yr
else

yr.parent := xr
if xr.rank = yr.rank

xr.rank := xr.rank + 1
}

Union-Find (simplified)

24

makeset(x) {
x.parent := x

}

find(x) {
if x.parent != x

x.parent := find(x.parent)
return x.parent

}

union(x, y) {
xr := find(x)
yr := find(y)
if xr = yr

return
xr.parent := yr

}

Implement ‘unify’ procedure using
union and find to unify terms…

Implementation strategy

• Representation of the different kinds of types
(including type variables)

• Map from AST nodes to types
• Union-Find
• Traverse AST, generate constraints, unify on the fly

– report type error if unification fails
– when unifying a type variable with e.g. a function type,

it is useful to pick the function type as representative
– for outputting solution, assign names to type variables

(that are roots), and be careful about recursive types

25

The complicated function

26

foo(p,x) {

var f,q;

if (*p==0) {

f=1;

} else {

q = alloc 0;

*q = (*p)-1;

f=(*p)*(x(q,x));

}

return f;

}

main() {

var n;

n = input;

return foo(&n,foo);

}

Generated constraints

27

⟦foo⟧ = (⟦p⟧,⟦x⟧)->⟦f⟧
⟦*p⟧ = int
⟦1⟧ = int
⟦p⟧ = &⟦*p⟧
⟦alloc 0⟧ = &⟦0⟧
⟦q⟧ = &⟦*q⟧
⟦f⟧ = ⟦(*p)*(x(q,x))⟧
⟦x(q,x)⟧ = int
⟦input⟧ = int
⟦n⟧ = ⟦input⟧
⟦foo⟧ =(⟦&n⟧,⟦foo⟧)->⟦foo(&n,foo)⟧

⟦*p==0⟧ = int
⟦f⟧ = ⟦1⟧
⟦0⟧ = int
⟦q⟧ = ⟦alloc 0⟧
⟦q⟧ = &⟦(*p)-1⟧
⟦*p⟧ = int
⟦(*p)*(x(q,x))⟧ = int
⟦x⟧ = (⟦q⟧,⟦x⟧)->⟦x(q,x)⟧
⟦main⟧ = ()->⟦foo(&n,foo)⟧
⟦&n⟧ = &⟦n⟧
⟦(*p)-1⟧ = int
⟦*p⟧ = ⟦0⟧

Solutions

Here, f is the regular type that is the unfolding of
f = (&int,f)->int

which can also be written f = μ α.(&int,α)->int
All other variables are assigned int

28

⟦p⟧ = &int
⟦q⟧ = &int
⟦alloc 0⟧ = &int
⟦x⟧ = f
⟦foo⟧ = f
⟦&n⟧ = &int
⟦main⟧ = ()->int

NO TYPE ERRORS

Infinitely many solutions

The function

has type (&a)->a for any type a

(which is not expressible in our current type language)

29

poly(x) {

return *x;

}

Recursive and polymorphic types
• Extra notation for recursive and polymorphic types:

• Types are (finite) terms generated by this grammar
• μ α. t is the (potentially recursive) type t where

occurrences of α represent t itself
• α is a type variable (implicitly universally quantified

if not bound by an enclosing μ) 30

t ® …

| μ α. t
| α

Slack

This never causes a type error – but is not typable:
int = ⟦r⟧ = ⟦g⟧ = &a

31

bar(g,x) {

var r;

if (x==0) {

r=g;

} else {

r=bar(2,0);

}

return r+1;

}

main() {

return bar(null,1)

}

Other errors

• Not all errors are type errors:
– dereference of null pointers
– reading of uninitialized variables
– division by zero
– escaping stack cells

(why not?)

• Other kinds of static analysis may catch these
32

baz() {
var x;
return &x;

}

main() {
var p;
p=baz();
*p=1;
return *p;

}

