Static Program Analysis
Part 2 — type analysis and unification

http://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael I. Schwartzbach
Computer Science, Aarhus University

http://cs.au.dk/~amoeller/spa/

Type errors

* Reasonable restrictions on operations:
— arithmetic operators apply only to integers
— comparisons apply only to like values
— only integers can be input and output
— conditions must be integers
— only functions can be called
— the * operator applies only to pointers
— field lookup can only be performed on records

* Violations result in runtime errors

Type checking

Can type errors occur during runtime?

This is interesting, hence instantly undecidable

Instead, we use conservative approximation

— a program is typable if it satisfies some type constraints
— these are systematically derived from the syntax tree

— if typable, then no runtime type errors occur

— but some programs will be unfairly rejected (s/ack)

What we shall see next is the essence of the
Damas—Hindley—Milner type inference technique,
which forms the basis of the type systems of e.g. ML, OCaml, and Haskell

Typability

no type errors typable

T~

slack

Fighting slack

 Make the type checker a bit more clever:

* An eternal struggle

Fighting slack

 Make the type checker a bit more clever:

* An eternal struggle
* And a great source of publications

Be careful out there

* The type checker may be unsound:

 Example: covariant arrays in Java

— a deliberate pragmatic choice

Generating and solving constraints

AST

constraints

4

) :

‘us:
solver
(unification)

= &int

solution

Types

* Types describe the possible values:

T 1nt
&t
(1, .., T) >1
{X:it, ..., X:1}

 These describe integers, pointers, functions,
and records

* Types are terms generated by this grammar
— example: (1nt,&1nt) ->&&1nt

Type constraints

We generate type constraints from an AST:
— all constraints are equalities
— they can be solved using a unification algorithm

Type variables:
— for each identifier declaration X we have the variable [[X]
— for each non-identifier expression E we have the variable [£]

Recall that all identifiers are unique
The expression E denotes an AST node, not syntax

(Possible extensions: polymorphism, subtyping, ...)

10

Generating constraints (1/3)

I [=1int

E;opEy: [E.] = [E;] = [E;op E;] = 1nt
E; == E;: [E4] = [E,] A [E;==E,] = 1nt
1nput: [1nput] =1nt

Xi= E: [X] = [E]

output E: [E] =1nt

1t (E) {S}: [E]=1nt

1t (E) {S;} else{S,}: [E]=1nt

while (E) {s}: [E]=1nt

Generating constraints (2/3)

X(X{y...,. X,)1 ...returnek; }:
[[X]] = ([[Xl]] y ceey |IXn]]) —-> |IE]]
ECE,, ..., E):
IE]] = ([[El]]/ 200, [[En]]) —-> [[E(El y ceey En)]]

allocE: [alloc E] = &[E]

&X: [&X] = &[X]

null: [null] =&« (each a is a fresh type variable)
*E: [E] = &[[*E]

*X =E: [X] = &[E]

Generating constraints (3/3)

X iE;y ooy X VE }:
{Xl:Eli---!X: _ J:HEJ]]!---!Xn:[[En]]}
E.X: [Ellssr ol X, ... }

This is the idea, but not directly expressible in our language of types

13

Generating constraints (3/3)

Let {f;, f5, ..., [} be the set of field names that appear in

the program

{X1TEyy oy Xot B} TAX02Eqy ooy XotE 3] = {f1 V10 cvos fn? Y}
where Yi= {[[Ei]] 'ff,: Xj for some j

Q;

E.X:

otherwise

[[E]]= {fl:YJ! ety fm: ym}

{[[E.X]] if f.= X
where y; =

Q;

otherwise

14

Exercise
main() {

var X, Yy, Z;
X = 1nput;

y = alloc 8§;
Ty = X;

Z = *Y;
return X;

}

e Generate and solve the constraints
 Thentrywithy = alloc 8 replacedbyy = 42

* Also try with the Scala implementation (when it’s completed)

General terms

Constructor symbols:
- Ex:1nt
e Q-ary:a,b,c — | o

el-ary:de —— [FX &

e 2-ary:f, g, h

— Ex: (71,T2)->134

e 3-ary:i, j, k

Terms:
® 3
* d(a)
* h(a,g(d(a),b))

Terms with variables:
e f(X,b)
* h(X,g(Y,2))

16

The unification problem

* An equality between two terms with variables:

k(X,b,Y) = k(f(Y,2),Z,d(2))

* A solution (a unifier) is an assignment from variables
to closed terms that makes both sides equal:

X =f(d(b),b)
Y = d(b) Implicit constraint for term equality:
7=b c(ty,...t) =c(ty,...t)) = t,=t/ forall i

17

Unification errors
* Constructor error:
d(X) = e(X)
* Arity error:

a = a(X)

18

The linear unification algorithm

Paterson and Wegman (1978)
In time O(n):

— finds a most general unifier
— or decides that none exists

Can be used as a back-end for type checking

... but only for finite terms

19

Recursive data structures

The program
var p;

p = alloc null;
P = p;

creates these constraints

[null] = &a
[alloc null]=&[null]
[p] =[alloc null]

[p] = &[p]

which have this “recursive solution” for p:
[p] = o where a = &a

Regular terms

* Infinite but (eventually) repeating:

— e(e(e(e(e(e(...)))))
— d(a,d(a,d(a, ...)))

— F(R(F(F(...), f(...)), F(F(...), F(.-.))), F(FCFC...), F(...)), F(F(...),f(...))))

* Only finitely many different subtrees

* A non-regular term:

— f(a,f(d(a),f(d(d(a)),f(d(d(d(a))),...))))

21

Regular unification

Huet (1976)

The unification problem for regular terms
can be solved in O(n-A(n))
using a union-find algorithm

A(n) is the inverse Ackermann function:
— smallest k such that n < Ack(k,k)
— this is never bigger than 5 for any real value of n

See the TIP implementation...

22

Union-Find

makeset(x) {
X.parent := X

x.rank :=0

find(x) {
if Xx.parent !=x
x.parent := find(x.parent)
return x.parent

union(x, y) {
xr := find(x)
yr :=find(y)
if Xxr =vyr
return
if xr.rank < yr.rank
Xr.parent :=yr
else
yr.parent := xr
if xr.rank = yr.rank
xr.rank := xr.rank + 1

23

Union-Find (simplified)

makeset(x) {
X.parent := x

find(x) {
if x.parent I=x
x.parent := find(x.parent)
return x.parent

union(x, y) {
xr := find(x)
yr :=find(y)
if xr =yr
return
Xr.parent := yr

Implement ‘unify’ procedure using

union and find to unify terms...

Implementation strategy

Representation of the different kinds of types
(including type variables)

Map from AST nodes to types
Union-Find
Traverse AST, generate constraints, unify on the fly

— report type error if unification fails

— when unifying a type variable with e.g. a function type,
it is useful to pick the function type as representative

— for outputting solution, assign names to type variables
(that are roots), and be careful about recursive types

25

The complicated function

main() {
foo(p,x) { Vel g
var f,q; n = 1nput;
if (*p==0) { return foo(&n, foo);
f=1; ¥
} else { |
q = alloc O;
*q = (Fp)-1;
F=C*p)*(x(q,x));
¥
return T;

¥

Generated constraints

[foo] = ([p], [XID ->[f]
[*p]=1nt

[1] =1nt

[p] = &[*p]

[alloc 0] =&[0]

[a] = &[*q]
[f1=0Cp)*(x(q,x))]
[x(q,x)]=1nt
[Tnput] =1nt

[n] = [1nput]

[0] =1nt

[a] =[alloc O]

[a] = &[C¥p)-1]

[*p]=1nt
[(*p)*(x(g,x))]=1nt

[x] = Clal, [x1) ->[xCa,x)]
[main] = ()->[foo(&n, foo)]
[&n] = &[n]

[(*p)-1]=1nt

[*p] =[0]

[foo] =([&n], [foo]) ->[foo(&n, foo)]

27

Solutions

[p] =&1nt

[q] =&1nt
[alloc O] =&1nt
[X] =
[foo] =¢
[&n] =&1nt
[main] = ()->1nt

~

Here, ¢ is the regular type that is the unfolding of
b= (&Int,dp)->1nt

which can also be written ¢ = p a.(&1nt,a)->1nt

All other variables are assigned 1nt

28

Infinitely many solutions

The function

poly(x) {
return *Xx;

¥

has type (&a) ->a for any type o

(which is not expressible in our current type language)

29

Recursive and polymorphic types

e Extra notation for recursive and polymorphic types:

T—> ...

| pao.t
| a

* Types are (finite) terms generated by this grammar

e pnoa.tisthe (potentially recursive) type T where
occurrences of a represent t itself

e ais atype variable (implicitly universally quantified
if not bound by an enclosing)

30

Slack

bar(g,x) {
var r;

if (x==0) {
r=g;

} else {
r=bar(2,0);

}

return r+1l;

}

main() {

return bar(null,1)

}

This never causes a type error — but is not typable:

int=r] =[g] = &«

Other errors

Not all errors are type errors:

baz() {
— dereference of nul 1 pointers var Xx:
— reading of uninitialized variables return &x;

— division by zero

— escaping stack cells \ main() {
var p;

(why not?) p=baz();
*p=1;
return *p;

}

Other kinds of static analysis may catch these

32

