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Flow-sensitivity

* Type checking is (usually) flow-insensitive:

— statements may be permuted without affecting typability
— constraints are naturally generated from AST nodes

* Other analyses must be flow-sensitive:

— the order of statements affects the results

— constraints are naturally generated from
control flow graph nodes



Sign analysis

* Determine the sign (+,-,0) of all expressions

* The Sign lattice: T

I The terminology
any number /’\ will be defined
+ - 0 |later — this is just

\I/ an appetizer...
1

“‘not of type number” —
(or, “unreachable code”)

e States are modeled by the map lattice Vars — Sign
where Vars is the set of variables in the program

Implementation: TIP/src/tip/analysis/SignAnalysis.scala
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Generating constraints

var a,b;

a = 42;

b = a + 1nput;
a =a - b;
1|var a,b
2a=I42
b = a + 1nput

4la=a-b

L

=

X, =[aPT,bHT]

Xy = Xq
X3 = Xy
X, = X3

a P +]
b = x,(a)+T]

@ - x3(a)-x3(b)]



Sign analysis constraints

The variable [[v] denotes a map that gives the sign value
for all variables at the program point after node v

For variable declarations:

[varx;, ..., x, ]| =JOIN(v)[x; =T, ..., x, = T]
For assignments:

[ x=E] =JOIN(v)[x - eval(JOIN(v),E)]
For all other nodes:

[v] = JOIN(v)

where JOIN(v) = LI [w] — comblpes information from predecessors
wepred(v) (explained later...)



Evaluating signs

The eval function is an abstract evaluation:
— eval(o,x) = o(x)
— eval(o,intconst) = sign(intconst)
— eval(o, E; Op E,) = op(eval(o,E,),eval(c,E,))

o: Vars — Sign is an abstract state
The sign function gives the sign of an integer

The op function is an abstract evaluation of the
given operator



Abstract operators
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(assuming the subset of TIP with only integer values)



Increasing precision

 Some loss of information:
— (2>0)==1isanalyzedas T
— +/+is analyzed as T, since e.g. % is rounded down

* Use aricher lattice for better precision:

* Abstract operators are now 8x8 tables



Partial orders

 Given asetS, a partial order E is a binary relation on S
that satisfies:

— reflexivity: VxeS: x E x
— transitivity: VX,V,2eS: XEyAYyEz=>xE 2
— anti-symmetry: VX,VES:XEYAYEX=>Xx=Yy

e Can be illustrated by a Hasse diagram (if finite) .
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Upper and lower bounds

Let X = S be a subset

We say that yeS is an upper bound (X E y) when
VXxeX:xEy

We say that yeS is a lower bound (y E X) when
V xeX:yEx

A least upper bound (join, supremum) LIX is defined by
XEUXAVYeS:XEYy=|LIXEy

A greatest lower bound (meet, infimum) [1X is defined by
[IXEXAVYyeS:yEX=yET]X

10



Lattices

* A (complete) lattice is a partial order where

LIX and [1X exist for all X = S

e A lattice must have

— a unique largest element, T = LIS (exercise)

— a unique smallest element, L =[1S

e |fSis a finite set, then it defines a lattice iff

— T and L existin S

— xUy and xy exist for all x,y €S (xUy is notation for LI{x,y})

Implementation: TIP/src/tip/lattices/
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These partial orders are lattices
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These partial orders are not lattices
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The powerset lattice

* Every finite set A defines a lattice (2#,<) where

- 1=¢
—T=A
—xUy=xuy
{0,1,2} {0,1,3} {0,2,3} {1,2,3}
{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

{0} {1} {2} 3}

—_—
{}
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Lattice height

* The height of a lattice is the length of the longest
pathfrom Lto T

* The lattice (2#,<) has height |A]

{0,1,2,3}
7
{0,1,2} {0,1,3} {0,2,3} {1,2,3}
e o
{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}
T~ =11t
o} (1} 2} 3}

—_—

{}
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Map lattice

e [f AisasetandLis a lattice, then we obtain
the map lattice:

A = L={[a;—Xx, 3,7X%,, ...] | A={a;, ay, ..} AXy, Xy, €L}

ordered pointwise

* Ll and N can be computed pointwise, e.g.,
(al'_) X1/ a2'_) X2peees an'_) Xn) LIA—) L (al'_) Y1 aZ'_) Y2eee an'_) yn) =

(a1 X UL yq, a9 X Uy Yoy, a0 X, L Y,)

LI, _, distributes L, through the map
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Map lattice

e [f AisasetandLis a lattice, then we obtain
the map lattice:

A = L={[a;—Xx, 3,7X%,, ...] | A={a;, ay, ..} AXy, Xy, €L}

ordered pointwise

* height(A — L) = |A|-height(L)
each element of A can move up independently
Example: A — L where

A is the set of program variables
L is the Sign lattice

17



Flat lattice

* If Ais aset, then flat(A) is a lattice:

N
\/

* height(flat(A)) = 2



Product lattice

 IfLy, L,, ..., L, are lattices, then so is the product:
Ly xLyx ... XL, = { (Xy,%5,..%,) | X € L }
where E is defined pointwise
* Note that LU and M can be computed pointwise, e.g.,

(XerZI"'an) LIL1 XLy X-+XLy (y11y2;- ’ -;yn) =

(Xl LILl Y1, X3 LILZ Y2, X I—ILn yn)
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Product lattice

 IfLy, L,, ..., L, are lattices, then so is the product:
Ly xLyx ... XL, = { (Xy,%5,..%,) | X € L }
where E is defined pointwise

* height(L;xL,x ... xL,) = height(L,)+ ... + height(L,)

Example:
each L; is the map lattice A —> L
A is a flat lattice of CFG nodes, where we ignore T = xand 1L = x

20



Lift lattice

e If Lis a lattice, then so is lift(L), which is:

1

e height(lift(L)) = height(L)+1
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Sign analysis constraints, revisited

The variable [[v] denotes a map that gives the sign value
for all variables at the program point after node v

[v] eStates where States = Vars — Sign

For variable declarations:
[varx;, ..., x, ]| =JOIN(v)[x; =T, ..., x, = T]
For assignments:
[ x=E] =JOIN(v)[x - eval(JOIN(v),E)]
For all other nodes:
[v] = JOIN(v)
«— combines information from predecessors

where JOIN(v) = L [w]

wepred(v) ,



var a,b,c; ’
a = 42;
b = 87;
1f (input) {
C =a + b; li
} else { 4
C =a - b;

}

Generating constraints

lentry] = 1

[var a,b,c]| = [entry][amT,b-T,c—T]

[a = 42] =[var a,b,c][a+~ +]

[b = 87] =[[a = 42][b~ +]

[input] =[[b = 87]

[c = a + b]] = [input][c~ [input](a)+[input](b)]
[c = a - b]] =[input][c~ [input](a)-[input](b)]
using Lub.— [[exit] =[c = a + b] U [c = a - b]
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Constraints

* From the program being analyzed, we have constraint
variables x4, ..., x,€L and a collection of constraints:

X, = f1(Xq, -on) Xp)
Note that L" Is

X, = f5(Xq, ..., X))
2= 72\ n a product lattice

X, = f.(Xq, ..., X,) »/
 These can be collected into a single function f: L"—L":
f(X1,..,%X,) = (F1(Xq,.0 %), oory To(Xq,-0X0))
 How do we find the least (i.e. most precise) value of
Xy, such that x,,...x. =f(x,,...,x.) (if that exists)???

24



Monotone functions

A function f: L = L is monotone when
Vx,y € L:xEy = f(x) E f(y)

A function with several arguments is monotone if
it is monotone in each argument

Monotone functions are closed under composition
As functions, LI and M are both monotone (exercises)
X E y can be interpreted as “x is at least as precise as y”

When f is monotone:
“more precise input cannot lead to less precise output”

25



Monotonicity for the sign analysis

Example, constraints for assignments:

[ x = E ] =JOIN(v)[x—eval(JOIN(v),E)]

The U operator and map
updates are monotone

(exercises)

Compositions preserve
monotonicity

Are the abstract operators

monotone?

Can be verified by a tedious inspection:
— Vx,yxX'el:xEx’"=x0pyEx'0py

— Vx,yyel.yEy ' =x0pyExopy’

26



Kleene’s fixed-point theorem

X € Lis a fixed-point of f: L — L iff f(x)=x

fi= F(F(())

In a lattice with finite height, every monotone
function f has a unique least fixed-point:

i =0

fix(f) = L fi(L)

27



Proof of existence

Clearly, LE (1)
Since f is monotone, we also have f(1) E f2(1)
By induction, f(L) E f*1(1)
This means that
LEf(L)ER(L)E... fi(l)...
IS an increasing chain
L has finite height, so for some k: fk(L1) = fk*1(L)
fxEythenxLy=y (exercise)
So fix(f) = f%(L)

28



Proof of unique least

Assume that x is another fixed-point: x = f(x)
Clearly, L E x

By induction, f(L) E fi(x) = x

In particular, fix(f) = f<(L) E x, i.e. fix(f) is least

Uniqueness then follows from anti-symmetry

29



Computing fixed-points

The time complexity of fix(f) depends on:
— the height of the lattice
— the cost of computing f
— the cost of testing equality

t = X;
x = f(x);
} while (xzt);

Implementation: TIP/src/tip/solvers/FixpointSolvers.scala
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Summary: lattice equations

* Let L be a lattice with finite height

* A equation system is of the form:
X; = f1(Xq, -o0) Xp)

Xy = f5(Xq, .un) X4)

X, = f.(Xq, ..., X))

where x; are variables and each f;: L"—L is monotone

 Note that L" is a product lattice

31



Solving equations

* Every equation system has a unique least solution,
which is the least fixed-point of the function f: L"—L"

defined by

f(Xll"'IXn) = (fl(xll"'lxn)l veey fn(xll"‘lxn))
* A solution is always a fixed-point

* The least one is the most precise

32



Monotone frameworks

John B. Kam, Jeffrey D. Ullman: Monotone Data Flow Analysis Frameworks. Acta Inf. 7: 305-317 (1977)

A CFG to be analyzed, nodes Nodes = {v,,v,, ..., V,,}

A finite-height lattice L of possible answers
— fixed or parametrized by the given program

A constraint variable [[v] €L for every CFG node v

A dataflow constraint for each syntactic construct
— relates the value of [v] to the variables for other nodes
— typically a node is related to its neighbors in CFG

— the constraints must be monotone functions:

[[Vi]] = fi([[vl]]r [[VZ]]r Y |Ivn]])
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Monotone frameworks

e Extract all constraints for the CFG

e Solve constraints using the fixed-point algorithm:

— we work in the lattice L" where L is a lattice describing
abstract states

— computing the least fixed-point of the combined function:

f(Xy,..0X,) = (F(Xy,0X0), ooy To(Xq,eensXp))

* This solution gives an answer from L for each CFG node

35



Generating and solving constraints

Y
R 5
L

fixed-point i 7

solver

[p] = &int
[a] = &int

AN [alloc 0] = &int

- [xI=¢

[foo] = ¢
[&n] = &int

’ [main] = ()->int

CFG .
solution

constraints

Conceptually, we separate constraint generation from constraint solving,
but in implementations, the two stages are typically interleaved
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Lattice points as answers

/

the trivial, useless answer

our answer (the least fixed-point)
safe answers

unsafe answers the true answer

Conservative approximation...

37



The naive algorithm

t = X;
X = F(x);
} while (x=t);

* Correctness ensured by the fixed point theorem

* Does not exploit any special structure of L" or f
(i.e. xeL™and f(xy,...,X) = (F1(Xq,ee0 X)) vony Fo(XgyeensX)))

Implementation: SimpleFixpointSolver




1te(n) {
var f;
f =1;
while (n>0) {
=
n = n-1;
¥

return f;

}

return f

Example: sign analysis

[n—> 1, f— 1]

[n— 1, f— 1]

[n—>1,f— 1]

[n—> L1, f— 1]

[n—>1,f— 1]

[n— 1, f— 1]

[n—> 1,f— 1]

[n—> 1, f— 1]
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1te(n) {
var f;
f =1;
while (n>0) {
=
n = n-1;
¥

return f;

}

return f

Example: sign analysis

[n—>T,f— 1]

INn—>T,f—>T]

[n— 1, f— +]

[n—>1,f— 1]

[n—>1,f— 1]

[n—>1,f— 1]

[n—> 1, f— 1]

[n—> 1, f— 1]
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1te(n) {
var f;
f =1;
while (n>0) {
=
n = n-1;
¥

return f;

}

return f

Example: sign analysis

In—> T,f— 1]

INn—>T,f—>T]

INn—>T,f— +]

[n—> L, f—> +]

[n—>1,f— 1]

[n—>1,f— 1]

[n—> 1,f— 1]

[n—> 1,f— 1]
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1te(n) {
var f;
f =1;
while (n>0) {
=
n = n-1;
¥

return f;

}

return f

Example: sign analysis

[In—> T,f— 1]

INn—>T,f—>T]

N> T,f—> +]
N> T,f—> +]
In—>1,f— 1]
In—>1,f— 1]

[n—> 1, f— +]

[n—> 1, f— 1]
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1te(n) {
var f;
f =1;
while (n>0) {
=
n = n-1;
¥

return f;

}

return f

Example: sign analysis

[n—>T,f— 1]

[Nn—>T,f—>T]

[In—>T,f— +]

[n—>T,f— +]

[n—>T,f—>T]

[n— 1, f— 1]

[n—>T,f— +]

[n—> 1, f— +]
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1te(n) {
var f;
f =1;
while (n>0) {
=
n = n-1;
¥

return f;

}

return f

Example: sign analysis

[n—>T,f— 1]

[Nn—>T,f— T]

[Nn—>T,f— +]

[Nn—>T,f— +]

[n—>T,f— T]

[n—>T,f—> T]

[n—> T, f— +]

[Nn—>T,f— +]
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1te(n) {
var f;
f =1;
while (n>0) {
=
n = n-1;
¥

return f;

}

return f

Example: sign analysis

[n—> T,f— 1]

INn—>T,f—>T]

N> T,f—> +]
N> T,f—> T]
N> T,f—> T]
N> T,f—> T]

[Nn—> T, f— +]

[In—> T, f— +]
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1te(n) {
var f;
f =1;
while (n>0) {
=
n = n-1;
¥

return f;

}

return f

Example: sign analysis

[n—> T,f— 1]

INn—>T,f—>T]

N> T,f—> +]
N> T,f—> T]
N> T,f—> T]
N> T,f—> T]

[n—> T,f—> T]

[Nn—>T,f— +]
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Example: sign analysis

[In—> T,f— 1]
TEE( n>T,f>T
var f; | ’ | Note S0Me of the
f=1; 'arfhmuma”y reCurSi\i’gStramts
while (n>0) { IN—T,f— +] 'S example
f = f*n;
}n=n_1; In>T,f> T]
return f;
} [h—>T,f—>T]

(We shall later see how to

Ihn>T,foT] improve p-r§C|5|on for the
loop condition)

INn—>T,f—> T]

[In—> T,f—> T]
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The naive algorithm

—

£,k (J_ 1., 1)
@ £4L, L, . L)
f1(1, 1, ..., 1) fRL, L, . 1)

Computing each new entry is done using the previous column
* Without using the entries in the current column that have
already been computed!

* And many entries are likely unchanged from one column to
the next!
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Chaotic iteration

Recall that f(x4,...,x,) = (f1(X1,...,X,), ..., To(X1,..00%,))

Xy = L; ... X, = 1;
while ((X{,...,X%X,) # T(X{,..., X)) {

pick 1 nondeterministically such
that x5 # 5(X¢, ..., X,)
X =f1(X1! ey Xn);

We now exploit the special structure of L"
— may require a higher number of iterations,
but less work in each iteration -



Correctness of chaotic iteration

Let X! be the value of x=(x4, ..., X,;) in the j'th iteration
of the naive algorithm

Let X! be the value of x=(x, ..., X,,) in the j’th iteration
of the chaotic iteration algorithm

By induction in j, show Vj: Xl E X/
Chaotic iteration eventually terminates at a fixed point

It must be identical to the result of the naive algorithm
since that is the least fixed point
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Towards a practical algorithm

e Computing 31 :... in chaotic iteration is not practical

 |dea: predict 1 from the analysis and the structure
of the program!

e Example:

In sign analysis, when we have processed
a CFG node v, process succ(v) next
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The worklist algorithm (1/2)

* Essentially a specialization of chaotic iteration that
exploits the special structure of f

* Most right-hand sides of f, are quite sparse:

— constraints on CFG nodes do not involve all others

* Use a map:

dep: Nodes —» 2Nodes

that for ve Nodes gives the variables w where v occurs
on the right-hand side of the constraint for w
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The worklist algorithm (2/2)

Xy = 1; ... X, = 13

W

= {Vy, ..., Vo };

while (wW=Z) {

}

Vi = W.removeNext();

y = ficxls oo G

if (y=x;) {
for (v; € dep(v;)) W.add(v;);
Xi =Y,

}

Implementation: SimpleworklistFixpointSolver
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Further improvements

* Represent the worklist as a priority queue

— find clever heuristics for priorities

e Look at the graph of dependency edges:
— build strongly-connected components
— solve constraints bottom-up in the resulting DAG
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Transfer functions

* The constraint functions in dataflow analysis usually
have this structure:

[v]=t,JOIN(v)) Wi ..o Wh
where t: States — States is called \
the transfer function for v Vv

e Example:
[x=E] =JOIN(v)[x = eval(JOIN(v),E)]
=t,(JOIN(v))
where
t,(s) = slx — evall(s,E)]
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Sign Analysis, continued...

Another improvement of the worklist algorithm:
— only add the entry node to the worklist initially

— then let dataflow propagate through the program
according to the constraints...

Now, what if the constraint rule for variable declarations was:
[varx;, ..., x, | =JOIN(v)[x; —» L, ..., x, = L]

(would make sense if we treat “uninitialized” as “no value” instead of “any value”)

Problem: iteration would stop before the fixpoint!
Solution: replace Vars — Sign by lift(Vars — Sign)

(allows us to distinguish between “unreachable” and “all variables are non-integers”)

This trick is also useful for context-sensitive analysis! (later...)

Implementation: Work1istFixpointSolverwithReachability, MapLiftLatticeSolver
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