
Anders Møller & Michael I. Schwartzbach
Computer Science, Aarhus University

Static Program Analysis
Part 3 – lattices and fixpoints

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Flow-sensitivity

• Type checking is (usually) flow-insensitive:
– statements may be permuted without affecting typability
– constraints are naturally generated from AST nodes

• Other analyses must be flow-sensitive:
– the order of statements affects the results
– constraints are naturally generated from

control flow graph nodes

2

Sign analysis

• Determine the sign (+,-,0) of all expressions
• The Sign lattice:

• States are modeled by the map lattice Vars® Sign
where Vars is the set of variables in the program

⊤

+ - 0

3

⊥

The terminology

will be defined

later – this is just

an appetizer…
“not of type number”
(or, “unreachable code”)

“any number”

Implementation: TIP/src/tip/analysis/SignAnalysis.scala

Generating constraints

4

var a,b;

a = 42;

b = a + input;

a = a - b;

1
x1 = [a↦⊤,b ↦⊤]
x2 = x1[a↦ +]
x3 = x2[b ↦ x2(a)+⊤]
x4 = x3[a ↦ x3(a)-x3(b)]

var a,b

a = 42

b = a + input

a = a - b

1
2
3
4

2

3

4

Sign analysis constraints

• The variable ⟦v⟧ denotes a map that gives the sign value
for all variables at the program point after node v

• For variable declarations:
⟦	var x1, ..., xn ⟧ = JOIN(v)[x1 ↦⊤, ..., xn ↦⊤]

• For assignments:
⟦ x = E ⟧ = JOIN(v)[x↦	eval(JOIN(v),E)]

• For all other nodes:
⟦v⟧ = JOIN(v)

where JOIN(v) = ⨆ ⟦w⟧
wÎpred(v)

5

combines information from predecessors
(explained later…)

Evaluating signs

• The eval function is an abstract evaluation:
– eval(s,x) = s(x)
– eval(s,intconst) = sign(intconst)
– eval(s, E1 op E2) = op(eval(s,E1),eval(s,E2))

• s: Vars ® Sign is an abstract state

• The sign function gives the sign of an integer

• The op function is an abstract evaluation of the
given operator

6

Abstract operators
+ ^ 0 - + ⊤
^ ^ ^ ^ ^ ^

0 ^ 0 - + ⊤
- ^ - - ⊤ ⊤
+ ^ + ⊤ + ⊤
⊤ ^ ⊤ ⊤ ⊤ ⊤

- ^ 0 - + ⊤
^ ^ ^ ^ ^ ^

0 ^ 0 + - ⊤
- ^ - ⊤ - ⊤
+ ^ + + ⊤ ⊤
⊤ ^ ⊤ ⊤ ⊤ ⊤

* ^ 0 - + ⊤
^ ^ ^ ^ ^ ^

0 ^ 0 0 0 0

- ^ 0 + - ⊤
+ ^ 0 - + ⊤
⊤ ^ 0 ⊤ ⊤ ⊤

/ ^ 0 - + ⊤
^ ^ ^ ^ ^ ^

0 ^ ⊤ 0 0 ⊤
- ^ ⊤ ⊤ ⊤ ⊤
+ ^ ⊤ ⊤ ⊤ ⊤
⊤ ^ ⊤ ⊤ ⊤ ⊤

> ^ 0 - + ⊤
^ ^ ^ ^ ^ ^

0 ^ 0 + 0 ⊤
- ^ 0 ⊤ 0 ⊤
+ ^ + + ⊤ ⊤
⊤ ^ ⊤ ⊤ ⊤ ⊤

== ^ 0 - + ⊤
^

0

-

+

⊤

7

== ^ 0 - + ⊤
^ ^ ^ ^ ^ ^

0 ^ + 0 0 ⊤
- ^ 0 ⊤ 0 ⊤
+ ^ 0 0 ⊤ ⊤
⊤ ^ ⊤ ⊤ ⊤ ⊤

(assuming the subset of TIP with only integer values)

Increasing precision

• Some loss of information:
– (2>0)==1 is analyzed as ⊤
– +/+ is analyzed as ⊤, since e.g. ½ is rounded down

• Use a richer lattice for better precision:

• Abstract operators are now 8´8 tables

⊤

+ 0 -

1

+0 -0

8

⊥

• Given a set S, a partial order ⊑ is a binary relation on S
that satisfies:
– reflexivity: "xÎS: x⊑	x
– transitivity: "x,y,zÎS: x⊑	y Ù y⊑	z Þ x⊑	z
– anti-symmetry: "x,yÎS: x⊑	y Ù y⊑	x Þ x = y

• Can be illustrated by a Hasse diagram (if finite)

Partial orders

9

Upper and lower bounds

• Let X Í S be a subset
• We say that yÎS is an upper bound (X⊑	y) when

" xÎX: x⊑	y
• We say that yÎS is a lower bound (y⊑ X) when

" xÎX: y⊑	x

• A least upper bound (join, supremum) ⨆X is defined by
X⊑⨆X Ù "yÎS: X⊑	y Þ ⨆X⊑	y

• A greatest lower bound (meet, infimum) ⨅X is defined by
⨅X⊑	X Ù "yÎS: y⊑	X Þ y⊑⨅X

10

Lattices
• A (complete) lattice is a partial order where

⨆X and ⨅X exist for all X Í S

• A lattice must have
– a unique largest element, ⊤ = ⨆S
– a unique smallest element, ⊥ = ⨅S

• If S is a finite set, then it defines a lattice iff
– ⊤ and ⊥ exist in S
– x⊔y and x⊓y exist for all x,y ÎS (x⊔y is notation for ⨆{x,y})

11
Implementation: TIP/src/tip/lattices/

(exercise)

These partial orders are lattices

12

These partial orders are not lattices

13

The powerset lattice

• Every finite set A defines a lattice (2A,Í) where
– ⊥	= Æ
– ⊤ = A
– x ⊔	y = x È y
– x ⊓	y = x Ç y {0,1,2,3}

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

{0} {1} {2} {3}

{}

14

Lattice height

• The height of a lattice is the length of the longest
path from ⊥	to ⊤

• The lattice (2A,Í) has height |A|

{0,1,2,3}

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

{0,1} {0,2} {0,3} {1,2} {1,3} {2,3}

{0} {1} {2} {3}

{}

15

Map lattice

• If A is a set and L is a lattice, then we obtain
the map lattice:

A ® L = { [a1↦x1, a2↦x2, ...] | A={a1, a2, …} Ù x1, x2 ,…Î L }
ordered pointwise

• ⊔	and ⊓	can be computed pointwise, e.g.,
(a1↦	x1, a2↦	x2,..., an↦	xn) ⊔A ® L (a1↦	y1, a2↦	y2,..., an↦	yn) =
(a1↦	x1 ⊔L y1, a2↦	x2 ⊔L y2,..., an↦	xn⊔L yn)

⊔A ® L distributes ⊔L through the map

16

Map lattice

• If A is a set and L is a lattice, then we obtain
the map lattice:

A ® L = { [a1↦x1, a2↦x2, ...] | A={a1, a2, …} Ù x1, x2 ,…Î L }
ordered pointwise

• height(A ® L) = |A|×height(L)
each element of A can move up independently

17

Example: A ® L where
• A is the set of program variables
• L is the Sign lattice

Flat lattice

• If A is a set, then flat(A) is a lattice:

• height(flat(A)) = 2

18

a1 a2 ... an

⊥

⊤

Product lattice

• If L1, L2, ..., Ln are lattices, then so is the product:

L1´L2´ ... ´Ln = { (x1,x2,...,xn) | xi Î Li }

where ⊑	is defined pointwise

• Note that ⊔	and ⊓	can be computed pointwise, e.g.,
(x1,x2,...,xn) ⊔%&×%(×⋯×%*(y1,y2,...,yn) =
(x1 ⊔%& y1, x2 ⊔%(y2,...,xn⊔%* yn)

19

Product lattice

• If L1, L2, ..., Ln are lattices, then so is the product:

L1´L2´ ... ´Ln = { (x1,x2,...,xn) | xi Î Li }

where ⊑	is defined pointwise

• height(L1´L2´ ... ´Ln) = height(L1)+ ... + height(Ln)

20

Example:
each Li is the map lattice A ® L
A is a flat lattice of CFG nodes, where we ignore ⊤	↦	x and ⊥	↦	x

Lift lattice

• If L is a lattice, then so is lift(L), which is:

• height(lift(L)) = height(L)+1

21

⊥

Sign analysis constraints, revisited

• The variable ⟦v⟧ denotes a map that gives the sign value
for all variables at the program point after node v

• ⟦v⟧ÎStates where States = Vars ® Sign

• For variable declarations:
⟦	var x1, ..., xn ⟧ = JOIN(v)[x1 ↦⊤, ..., xn ↦⊤]

• For assignments:
⟦ x = E ⟧ = JOIN(v)[x↦	eval(JOIN(v),E)]

• For all other nodes:
⟦v⟧ = JOIN(v)

where JOIN(v) = ⨆ ⟦w⟧
wÎpred(v)

22

combines information from predecessors

Generating constraints

23

var a,b,c;

a = 42;

b = 87;

if (input) {

c = a + b;

} else {

c = a - b;

}

⟦entry⟧ = ⊥	
⟦var a,b,c⟧ = ⟦entry⟧[a↦⊤,b↦⊤,c↦⊤]
⟦a = 42⟧ = ⟦var a,b,c⟧[a↦ +]
⟦b = 87⟧ = ⟦a = 42⟧[b↦ +]
⟦input⟧ = ⟦b = 87⟧
⟦c = a + b⟧ = ⟦input⟧[c ↦ ⟦input⟧(a)+⟦input⟧(b)]
⟦c = a - b⟧ = ⟦input⟧[c ↦ ⟦input⟧(a)-⟦input⟧(b)]
⟦exit⟧ = ⟦c = a + b⟧ ⊔ ⟦c = a - b⟧using l.u.b.

Constraints

• From the program being analyzed, we have constraint
variables x1, …, xnÎL and a collection of constraints:

x1 = f1(x1, ..., xn)
x2 = f2(x1, ..., xn)
...
xn = fn(x1, ..., xn)

• These can be collected into a single function f: Ln®Ln:
f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn))

• How do we find the least (i.e. most precise) value of
x1,...,xn such that x1,...,xn = f(x1,...,xn) (if that exists)???

24

Note that Ln is
a product lattice

Monotone functions

• A function f: L ® L is monotone when
"x,y Î L: x ⊑	y Þ f(x) ⊑	f(y)

• A function with several arguments is monotone if
it is monotone in each argument

• Monotone functions are closed under composition
• As functions, ⊔	and ⊓	are both monotone
• x ⊑	y can be interpreted as “x is at least as precise as y”
• When f is monotone:

“more precise input cannot lead to less precise output”

25

(exercises)

Monotonicity for the sign analysis

• The ⊔ operator and map
updates are monotone

• Compositions preserve
monotonicity

• Are the abstract operators
monotone?

• Can be verified by a tedious inspection:
– "x,y,x’ÎL: x ⊑	x’ Þ x op y ⊑	x’ op y
– "x,y,y’ÎL: y⊑	y’ Þ x op y ⊑	x op y’

26

(exercises)

Example, constraints for assignments:
⟦ x = E ⟧ = JOIN(v)[x↦eval(JOIN(v),E)]

Kleene’s fixed-point theorem

x Î L is a fixed-point of f: L ® L iff f(x)=x
i

fi = f(f(f(…)))

In a lattice with finite height, every monotone
function f has a unique least fixed-point:

fix(f) = ⨆	fi(⊥)

27

i ³0

Proof of existence

• Clearly, ⊥⊑	f(⊥)
• Since f is monotone, we also have f(⊥)⊑	f2(⊥)
• By induction, fi(⊥)⊑	fi+1(⊥)
• This means that

⊥	⊑	f(⊥)⊑	f2(⊥) ⊑	... fi(⊥) ...
is an increasing chain

• L has finite height, so for some k: fk(⊥) = fk+1(⊥)
• If x ⊑ y then x ⊔	y = y
• So fix(f) = fk(⊥)

28

(exercise)

Proof of unique least

• Assume that x is another fixed-point: x = f(x)
• Clearly, ⊥	⊑	x
• By induction, fi(⊥)⊑	fi(x) = x
• In particular, fix(f) = fk(⊥)⊑	x, i.e. fix(f) is least

• Uniqueness then follows from anti-symmetry

29

Computing fixed-points

The time complexity of fix(f) depends on:
– the height of the lattice
– the cost of computing f
– the cost of testing equality

30

Implementation: TIP/src/tip/solvers/FixpointSolvers.scala

x = ⊥;
do {

t = x;

x = f(x);

} while (x¹t);

Summary: lattice equations

• Let L be a lattice with finite height

• A equation system is of the form:
x1 = f1(x1, ..., xn)
x2 = f2(x1, ..., xn)
...
xn = fn(x1, ..., xn)

where xi are variables and each fi: Ln®L is monotone

• Note that Ln is a product lattice
31

Solving equations

• Every equation system has a unique least solution,
which is the least fixed-point of the function f: Ln®Ln

defined by
f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn))

• A solution is always a fixed-point

• The least one is the most precise

32

Monotone frameworks

• A CFG to be analyzed, nodes Nodes = {v1,v2, ..., vn}
• A finite-height lattice L of possible answers
– fixed or parametrized by the given program

• A constraint variable ⟦v⟧ÎL for every CFG node v

• A dataflow constraint for each syntactic construct
– relates the value of ⟦v⟧ to the variables for other nodes
– typically a node is related to its neighbors in CFG
– the constraints must be monotone functions:
⟦vi⟧ = fi(⟦v1⟧, ⟦v2⟧, ..., ⟦vn⟧)

34

John B. Kam, Jeffrey D. Ullman: Monotone Data Flow Analysis Frameworks. Acta Inf. 7: 305-317 (1977)

Monotone frameworks

• Extract all constraints for the CFG

• Solve constraints using the fixed-point algorithm:
– we work in the lattice Ln where L is a lattice describing

abstract states
– computing the least fixed-point of the combined function:

f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn))

• This solution gives an answer from L for each CFG node

35

Generating and solving constraints

CFG

36

constraints

solution

fixed-point
solver

⟦p⟧ = &int
⟦q⟧ = &int
⟦alloc 0⟧ = &int
⟦x⟧ = f
⟦foo⟧ = f
⟦&n⟧ = &int
⟦main⟧ = ()->int

Conceptually, we separate constraint generation from constraint solving,
but in implementations, the two stages are typically interleaved

Lattice points as answers

the trivial, useless answer

the true answer

our answer (the least fixed-point)
safe answers

unsafe answers

37

Conservative approximation…

x = (⊥, ⊥, ..., ⊥);
do {

t = x;

x = f(x);

} while (x¹t);

The naive algorithm

• Correctness ensured by the fixed point theorem
• Does not exploit any special structure of Ln or f

(i.e. xÎLn and f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn)))

38

Implementation: SimpleFixpointSolver

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

Example: sign analysis

39

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

var f

f=1

n>0

f=f*n

n=n-1

return f

true

false

1

2

3

4

5

6

7

8

Example: sign analysis

40

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

var f

f=1

n>0

f=f*n

n=n-1

return f

true

false

1

2

3

4

5

6

7

8

[n ® ⊤, f ® ⊥]

[n ® ⊤, f ® ⊤]

[n ® ⊥, f ® +]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

Example: sign analysis

41

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

var f

f=1

n>0

f=f*n

n=n-1

return f

true

false

1

2

3

4

5

6

7

8

[n ® ⊤, f ® ⊥]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® +]

[n ® ⊥, f ® +]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

Example: sign analysis

42

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

var f

f=1

n>0

f=f*n

n=n-1

return f

true

false

1

2

3

4

5

6

7

8

[n ® ⊤, f ® ⊥]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® +]

[n ® ⊤, f ® +]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® ⊥]

[n ® ⊥, f ® +]

[n ® ⊥, f ® ⊥]

Example: sign analysis

43

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

var f

f=1

n>0

f=f*n

n=n-1

return f

true

false

1

2

3

4

5

6

7

8

[n ® ⊤, f ® ⊥]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® +]

[n ® ⊤, f ® +]

[n ® ⊤, f ® ⊤]

[n ® ⊥, f ® ⊥]

[n ® ⊤, f ® +]

[n ® ⊥, f ® +]

Example: sign analysis

44

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

var f

f=1

n>0

f=f*n

n=n-1

return f

true

false

1

2

3

4

5

6

7

8

[n ® ⊤, f ® ⊥]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® +]

[n ® ⊤, f ® +]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® +]

[n ® ⊤, f ® +]

Example: sign analysis

45

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

var f

f=1

n>0

f=f*n

n=n-1

return f

true

false

1

2

3

4

5

6

7

8

[n ® ⊤, f ® ⊥]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® +]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® +]

[n ® ⊤, f ® +]

Example: sign analysis

46

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

var f

f=1

n>0

f=f*n

n=n-1

return f

true

false

1

2

3

4

5

6

7

8

[n ® ⊤, f ® ⊥]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® +]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® +]

Example: sign analysis

47

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

var f

f=1

n>0

f=f*n

n=n-1

return f

true

false

1

2

3

4

5

6

7

8

Note: some of the constraints are mutually recursivein this example

[n ® ⊤, f ® ⊥]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® +]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® ⊤]

[n ® ⊤, f ® ⊤]

(We shall later see how to
improve precision for the
loop condition)

The naive algorithm

f0(⊥, ⊥, …, ⊥) f1(⊥, ⊥, …, ⊥) … fk(⊥, ⊥, …, ⊥)
1 ⊥ f11(⊥, ⊥, …, ⊥) … f1k(⊥, ⊥, …, ⊥)
2 ⊥ f2

1(⊥, ⊥, …, ⊥) … f2
k(⊥, ⊥, …, ⊥)

… … … … …
n ⊥ fn1(⊥, ⊥, …, ⊥) … fnk(⊥, ⊥, …, ⊥)

48

Computing each new entry is done using the previous column
• Without using the entries in the current column that have

already been computed!
• And many entries are likely unchanged from one column to

the next!

x1 = ⊥; ... xn = ⊥;
while ((x1,...,xn) ≠ f(x1,..., xn)) {

pick i nondeterministically such
that xi ≠ fi(x1, ..., xn)

xi = fi(x1, ..., xn);

}

Chaotic iteration

We now exploit the special structure of Ln

– may require a higher number of iterations,
but less work in each iteration 49

Recall that f(x1,...,xn) = (f1(x1,...,xn), ..., fn(x1,...,xn))

Correctness of chaotic iteration

• Let xj be the value of x=(x1, ..., xn) in the j’th iteration
of the naive algorithm

• Let xj be the value of x=(x1, ..., xn) in the j’th iteration
of the chaotic iteration algorithm

• By induction in j, show "j: xj ⊑	xj

• Chaotic iteration eventually terminates at a fixed point
• It must be identical to the result of the naive algorithm

since that is the least fixed point

50

Towards a practical algorithm

• Computing $i:… in chaotic iteration is not practical

• Idea: predict i from the analysis and the structure
of the program!

• Example:
In sign analysis, when we have processed
a CFG node v, process succ(v) next

51

The worklist algorithm (1/2)

• Essentially a specialization of chaotic iteration that
exploits the special structure of f

• Most right-hand sides of fi are quite sparse:
– constraints on CFG nodes do not involve all others

• Use a map:

dep: Nodes ® 2Nodes

that for vÎNodes gives the variables w where v occurs
on the right-hand side of the constraint for w

52

x1 = ⊥; ... xn = ⊥;
W = {v1, ..., vn};

while (W¹Æ) {
vi = W.removeNext();

y = fi(x1, ..., xn);

if (y¹xi) {
for (vj Î dep(vi)) W.add(vj);

xi = y;

}

}

The worklist algorithm (2/2)

53
Implementation: SimpleWorklistFixpointSolver

Further improvements

• Represent the worklist as a priority queue
– find clever heuristics for priorities

• Look at the graph of dependency edges:
– build strongly-connected components
– solve constraints bottom-up in the resulting DAG

54

Transfer functions

• The constraint functions in dataflow analysis usually
have this structure:

⟦ v ⟧ = tv(JOIN(v))
where tv: States ® States is called
the transfer function for v

• Example:
⟦ x = E ⟧ = JOIN(v)[x↦	eval(JOIN(v),E)]

= tv(JOIN(v))
where
tv(s) = s[x↦	eval(s,E)]

55

w1 … wn

tv
v

Sign Analysis, continued...
• Another improvement of the worklist algorithm:
– only add the entry node to the worklist initially
– then let dataflow propagate through the program

according to the constraints...

• Now, what if the constraint rule for variable declarations was:
⟦	var x1, ..., xn ⟧ = JOIN(v)[x1 ↦	⊥, ..., xn↦	⊥]

(would make sense if we treat “uninitialized” as “no value” instead of “any value”)

• Problem: iteration would stop before the fixpoint!
• Solution: replace Vars® Sign by lift(Vars® Sign)

(allows us to distinguish between “unreachable” and “all variables are non-integers”)

• This trick is also useful for context-sensitive analysis! (later…)

56
Implementation: WorklistFixpointSolverWithReachability, MapLiftLatticeSolver

