Static Program Analysis Part 3 – lattices and fixpoints

http://cs.au.dk/~amoeller/spa/

Anders Møller & Michael I. Schwartzbach Computer Science, Aarhus University

Flow-sensitivity

- Type checking is (usually) flow-*insensitive*:
 - statements may be permuted without affecting typability
 - constraints are naturally generated from AST nodes
- Other analyses must be flow-*sensitive*:
 - the order of statements affects the results
 - constraints are naturally generated from control flow graph nodes

Sign analysis

• Determine the sign (+,−,0) of all expressions

 States are modeled by the map lattice Vars → Sign where Vars is the set of variables in the program

Implementation: TIP/src/tip/analysis/SignAnalysis.scala

Generating constraints

1 var a,b; 2 a = 42; 3 b = a + input; 4 a = a - b;

 $x_1 = [a \mapsto \top, b \mapsto \top]$ $x_2 = x_1[a \mapsto +]$ $x_3 = x_2[b \mapsto x_2(a) + \top]$ $x_4 = x_3[a \mapsto x_3(a) - x_3(b)]$

Sign analysis constraints

- The variable [[v]] denotes a map that gives the sign value for all variables at the program point *after* node v
- For variable declarations:

 $\llbracket \operatorname{var} x_1, \ldots, x_n \rrbracket = JOIN(v)[x_1 \mapsto \top, \ldots, x_n \mapsto \top]$

• For assignments:

 $[[x = E]] = JOIN(v)[x \mapsto eval(JOIN(v), E)]$

• For all other nodes:

[[v]] = *JOIN*(v)

where $JOIN(v) = \bigsqcup [w]$ $w \in pred(v)$ combines information from predecessors (explained later...)

Evaluating signs

- The *eval* function is an *abstract evaluation*:
 - $eval(\sigma, x) = \sigma(x)$
 - $eval(\sigma, intconst) = sign(intconst)$
 - $eval(\sigma, E_1 \operatorname{op} E_2) = \overline{\operatorname{op}}(eval(\sigma, E_1), eval(\sigma, E_2))$
- $\sigma: Vars \rightarrow Sign$ is an abstract state
- The *sign* function gives the sign of an integer
- The **op** function is an abstract evaluation of the given operator

Abstract operators

(assuming the subset of TIP with only integer values)

Increasing precision

- Some loss of information:
 - (2>0)==1 is analyzed as T
 - +/+ is analyzed as T, since e.g. $\frac{1}{2}$ is rounded down
- Use a richer lattice for better precision:

• Abstract operators are now 8×8 tables

Partial orders

- Given a set S, a partial order \sqsubseteq is a binary relation on S that satisfies:
 - reflexivity: $\forall x \in S: x \sqsubseteq x$
 - transitivity:
 - anti-symmetry:

 $\forall x, y, z \in S: x \sqsubseteq y \land y \sqsubseteq z \Longrightarrow x \sqsubseteq z$

$$\forall x, y \in S: x \sqsubseteq y \land y \sqsubseteq x \Longrightarrow x = y$$

Can be illustrated by a Hasse diagram (if finite)

Upper and lower bounds

- Let $X \subseteq S$ be a subset
- We say that $y \in S$ is an *upper* bound (X \sqsubseteq y) when $\forall x \in X: x \sqsubseteq y$
- We say that $y \in S$ is a *lower* bound ($y \sqsubseteq X$) when $\forall x \in X: y \sqsubseteq x$
- A *least* upper bound (join, supremum) $\sqcup X$ is defined by $X \sqsubseteq \sqcup X \land \forall y \in S: X \sqsubseteq y \Rightarrow \sqcup X \sqsubseteq y$
- A greatest lower bound (meet, infimum) $\prod X$ is defined by $\prod X \sqsubseteq X \land \forall y \in S: y \sqsubseteq X \Rightarrow y \sqsubseteq \prod X$

Lattices

- A (complete) *lattice* is a partial order where $\Box X$ and $\Box X$ exist for all $X \subseteq S$
- A lattice must have
 - a unique largest element, $T = \bigsqcup S$ (exercise)
 - a unique smallest element, $\perp = \prod S$
- If S is a finite set, then it defines a lattice iff
 - \top and \perp exist in S
 - x⊔y and x⊓y exist for all x,y ∈ S (x⊔y is notation for $\bigsqcup{x,y}$)

Implementation: TIP/src/tip/lattices/

These partial orders are lattices

These partial orders are not lattices

The powerset lattice

- Every finite set A defines a lattice (2^A,⊆) where
 - $\perp = \emptyset$
 - T = A
 - $x \sqcup y = x \cup y$

Lattice height

- The *height* of a lattice is the length of the longest path from \perp to T
- The lattice (2^A,⊆) has height |A|

Map lattice

 If A is a set and L is a lattice, then we obtain the map lattice:

 $A \rightarrow L = \{ [a_1 \mapsto x_1, a_2 \mapsto x_2, ...] \mid A = \{a_1, a_2, ...\} \land x_1, x_2, ... \in L \}$ ordered pointwise

• \sqcup and \sqcap can be computed pointwise, e.g., $(a_1 \mapsto x_1, a_2 \mapsto x_2, ..., a_n \mapsto x_n) \sqcup_{A \to L} (a_1 \mapsto y_1, a_2 \mapsto y_2, ..., a_n \mapsto y_n) =$ $(a_1 \mapsto x_1 \sqcup_L y_1, a_2 \mapsto x_2 \sqcup_L y_2, ..., a_n \mapsto x_n \sqcup_L y_n)$

 $\sqcup_{\mathsf{A}\,\rightarrow\,\mathsf{L}}\,$ distributes $\sqcup_\mathsf{L}\,$ through the map

Map lattice

 If A is a set and L is a lattice, then we obtain the map lattice:

 $A \rightarrow L = \left\{ \left[a_1 \mapsto x_1, a_2 \mapsto x_2, \ldots\right] \ \middle| \ A = \left\{a_1, a_2, \ldots\right\} \land x_1, x_2, \ldots \in L \right\}$ ordered pointwise

height(A → L) = |A|·height(L)
 each element of A can move up independently

Example: $A \rightarrow L$ where

- A is the set of program variables
- L is the Sign lattice

Flat lattice

• If A is a set, then *flat*(A) is a lattice:

height(flat(A)) = 2

Product lattice

• If L₁, L₂, ..., L_n are lattices, then so is the *product*:

$$L_1 \times L_2 \times ... \times L_n = \{ (x_1, x_2, ..., x_n) \mid x_i \in L_i \}$$

where \sqsubseteq is defined pointwise

Note that ⊔ and ⊓ can be computed pointwise, e.g.,
 (x₁,x₂,...,x_n) ⊔_{L₁×L₂×···×L_n}(y₁,y₂,...,y_n) =
 (x₁ ⊔_{L₁} y₁, x₂ ⊔_{L₂} y₂,...,x_n ⊔_{L_n} y_n)

Product lattice

• If L₁, L₂, ..., L_n are lattices, then so is the *product*:

$$L_1 \times L_2 \times ... \times L_n = \{ (x_1, x_2, ..., x_n) | x_i \in L_i \}$$

where \sqsubseteq is defined pointwise

• $height(L_1 \times L_2 \times ... \times L_n) = height(L_1) + ... + height(L_n)$

Example: each L_i is the map lattice $A \rightarrow L$ A is a flat lattice of CFG nodes, where we ignore $\top \mapsto x$ and $\bot \mapsto x$

Lift lattice

• If L is a lattice, then so is *lift*(L), which is:

height(lift(L)) = height(L)+1

Sign analysis constraints, revisited

- The variable [[v]] denotes a map that gives the sign value for all variables at the program point *after* node v
- $\llbracket v \rrbracket \in States$ where $States = Vars \rightarrow Sign$
- For variable declarations:

 $\llbracket \operatorname{var} x_1, \dots, x_n \rrbracket = JOIN(v)[x_1 \mapsto \top, \dots, x_n \mapsto \top]$

• For assignments:

 $[[x = E]] = JOIN(v)[x \mapsto eval(JOIN(v), E)]$

• For all other nodes:

[[v]] = *JOIN*(v)

where $JOIN(v) = \bigsqcup_{w \in pred(v)} \llbracket w \rrbracket$

combines information from predecessors

```
var a,b,c;
a = 42;
b = 87;
if (input) {
    c = a + b;
} else {
    c = a - b;
}
```

Generating constraints

 $\begin{bmatrix} entry \end{bmatrix} = \bot$ $\begin{bmatrix} var \ a, b, c \end{bmatrix} = \begin{bmatrix} entry \end{bmatrix} [a \mapsto T, b \mapsto T, c \mapsto T]$ $\begin{bmatrix} a = 42 \end{bmatrix} = \begin{bmatrix} var \ a, b, c \end{bmatrix} [a \mapsto +]$ $\begin{bmatrix} b = 87 \end{bmatrix} = \begin{bmatrix} a = 42 \end{bmatrix} [b \mapsto +]$ $\begin{bmatrix} input \end{bmatrix} = \begin{bmatrix} b = 87 \end{bmatrix}$ $\begin{bmatrix} c = a + b \end{bmatrix} = \begin{bmatrix} input \end{bmatrix} [c \mapsto \begin{bmatrix} input \end{bmatrix} (a) + \begin{bmatrix} input \end{bmatrix} (b)]$ $\begin{bmatrix} c = a - b \end{bmatrix} = \begin{bmatrix} input \end{bmatrix} [c \mapsto \begin{bmatrix} input \end{bmatrix} (a) - \begin{bmatrix} input \end{bmatrix} (b)]$ $\begin{bmatrix} exit \end{bmatrix} = \begin{bmatrix} c = a + b \end{bmatrix} \sqcup \begin{bmatrix} c = a - b \end{bmatrix}$

Constraints

 From the program being analyzed, we have constraint variables x₁, ..., x_n∈L and a collection of constraints:

- These can be collected into a single function f: $L^n \rightarrow L^n$: $f(x_1,...,x_n) = (f_1(x_1,...,x_n), ..., f_n(x_1,...,x_n))$
- How do we find the least (i.e. most precise) value of x₁,...,x_n such that x₁,...,x_n = f(x₁,...,x_n) (if that exists)???

Monotone functions

• A function f: $L \rightarrow L$ is *monotone* when

 $\forall x,y \in L: x \sqsubseteq y \Longrightarrow f(x) \sqsubseteq f(y)$

- A function with several arguments is monotone if it is monotone in each argument
- Monotone functions are closed under composition
- As functions, ⊔ and ⊓ are both monotone (exercises)
- x ⊑ y can be interpreted as "x is at least as precise as y"
- When f is monotone:
 "more precise input cannot lead to less precise output"

Monotonicity for the sign analysis

Example, constraints for assignments: $[x = E] = JOIN(v)[x \mapsto eval(JOIN(v), E)]$

- The ⊔ operator and map updates are monotone
- Compositions preserve
 monotonicity
- Are the abstract operators monotone?
- Can be verified by a tedious inspection:
 - $\forall x, y, x' \in L: x \sqsubseteq x' \Longrightarrow x \ \overline{\text{op}} \ y \sqsubseteq x' \ \overline{\text{op}} \ y$
 - $\forall x, y, y' \in \mathsf{L}: y \sqsubseteq y' \Longrightarrow x \ \overline{\mathsf{op}} \ y \sqsubseteq x \ \overline{\mathsf{op}} \ y'$

(exercises)

Kleene's fixed-point theorem

 $x \in L$ is a *fixed-point* of f: L \rightarrow L iff f(x)=x

$$f^{i} = f(f(f(...)))$$

In a lattice with finite height, every monotone function f has a *unique least fixed-point*: $_{i \ge 0}$

$$fix(f) = \bigsqcup f^i(\bot)$$

Proof of existence

- Clearly, $\bot \sqsubseteq f(\bot)$
- Since f is monotone, we also have $f(\bot) \sqsubseteq f^2(\bot)$
- By induction, $f^{i}(\bot) \sqsubseteq f^{i+1}(\bot)$
- This means that

 $\bot \sqsubseteq f(\bot) \sqsubseteq f^2(\bot) \sqsubseteq \dots f^i(\bot) \dots$

is an increasing chain

- L has finite height, so for some k: $f^{k}(\bot) = f^{k+1}(\bot)$
- If $x \sqsubseteq y$ then $x \sqcup y = y$ (exercise)
- So fix(f) = $f^k(\bot)$

Proof of unique least

- Assume that x is another fixed-point: x = f(x)
- Clearly, $\bot \sqsubseteq x$
- By induction, $f^i(\bot) \sqsubseteq f^i(x) = x$
- In particular, $fix(f) = f^k(\bot) \sqsubseteq x$, i.e. fix(f) is least
- Uniqueness then follows from anti-symmetry

Computing fixed-points

The time complexity of *fix*(f) depends on:

- the height of the lattice
- the cost of computing f
- the cost of testing equality

Implementation: TIP/src/tip/solvers/FixpointSolvers.scala

Summary: lattice equations

- Let L be a lattice with finite height
- A *equation system* is of the form:

$$x_1 = f_1(x_1, ..., x_n)$$

 $x_2 = f_2(x_1, ..., x_n)$

$$x_n = f_n(x_1, ..., x_n)$$

where x_i are variables and each $f_i: L^n \rightarrow L$ is monotone

• Note that Lⁿ is a product lattice

Solving equations

 Every equation system has a unique least solution, which is the least fixed-point of the function f: Lⁿ→Lⁿ defined by

 $f(x_1,...,x_n) = (f_1(x_1,...,x_n), ..., f_n(x_1,...,x_n))$

- A solution is always a fixed-point
- The least one is the most precise

Monotone frameworks

John B. Kam, Jeffrey D. Ullman: Monotone Data Flow Analysis Frameworks. Acta Inf. 7: 305-317 (1977)

- A CFG to be analyzed, nodes Nodes = {v₁, v₂, ..., v_n}
- A finite-height lattice L of possible answers
 fixed or parametrized by the given program
- A constraint variable [[v]] ∈ L for every CFG node v
- A dataflow constraint for each syntactic construct
 - relates the value of $[\![v]\!]$ to the variables for other nodes
 - typically a node is related to its neighbors in CFG
 - the constraints must be monotone functions:

 $\llbracket v_i \rrbracket = f_i(\llbracket v_1 \rrbracket, \llbracket v_2 \rrbracket, ..., \llbracket v_n \rrbracket)$

Monotone frameworks

- Extract all constraints for the CFG
- Solve constraints using the fixed-point algorithm:
 - we work in the lattice Lⁿ where L is a lattice describing abstract states
 - computing the least fixed-point of the combined function: $f(x_1,...,x_n) = (f_1(x_1,...,x_n), ..., f_n(x_1,...,x_n))$
- This solution gives an answer from L for each CFG node

Generating and solving constraints

Conceptually, we separate constraint generation from constraint solving, but in implementations, the two stages are typically interleaved

Lattice points as answers

Conservative approximation...

The naive algorithm

- Correctness ensured by the fixed point theorem
- Does not exploit any special structure of Lⁿ or f
 (i.e. x∈Lⁿ and f(x₁,...,x_n) = (f₁(x₁,...,x_n), ..., f_n(x₁,...,x_n)))

Implementation: SimpleFixpointSolver

$$[n \rightarrow \bot, f \rightarrow \bot]$$

$$[n \rightarrow \bot, f \rightarrow \bot]$$

 $[n \rightarrow \bot, f \rightarrow \bot]$

$$[n \to \bot, f \to \bot]$$

$$[n \rightarrow \bot, f \rightarrow \bot]$$

$$[n \rightarrow \bot, f \rightarrow \bot]$$

 $[n \rightarrow \bot, f \rightarrow \bot]$

 $[n \rightarrow \bot, f \rightarrow \bot]$

$$[n \rightarrow T, f \rightarrow T]$$
$$[n \rightarrow \bot, f \rightarrow +]$$
$$[n \rightarrow \bot, f \rightarrow \bot]$$

 $[n \rightarrow T, f \rightarrow \bot]$

 $[n \rightarrow T, f \rightarrow \bot]$

 $[n \rightarrow T, f \rightarrow T]$

 $[n \rightarrow T, f \rightarrow +]$

 $[n \rightarrow \bot, f \rightarrow +]$

 $[n \rightarrow \bot, f \rightarrow \bot]$

 $[n \rightarrow \bot, f \rightarrow \bot]$

 $[n \rightarrow \bot, f \rightarrow \bot]$

 $[n \rightarrow \bot, f \rightarrow \bot]$

 $[n \rightarrow T, f \rightarrow \bot]$

 $[n \rightarrow T, f \rightarrow T]$

 $[n \rightarrow T, f \rightarrow +]$

- $[n \rightarrow T, f \rightarrow +]$
- $[n \rightarrow \bot, f \rightarrow \bot]$
- $[n \rightarrow \bot, f \rightarrow \bot]$
- $[n \rightarrow \bot, f \rightarrow +]$
- $[n \rightarrow \bot, f \rightarrow \bot]$

 $[n \rightarrow T, f \rightarrow \bot]$

 $[n \rightarrow T, f \rightarrow T]$

 $[n \rightarrow T, f \rightarrow +]$

 $[n \rightarrow T, f \rightarrow +]$

 $[n \rightarrow T, f \rightarrow T]$

 $[n \rightarrow \bot, f \rightarrow \bot]$

 $[n \rightarrow T, f \rightarrow +]$

 $[n \rightarrow \bot, f \rightarrow +]$

$$[n \rightarrow T, f \rightarrow \bot]$$

$$[n \rightarrow T, f \rightarrow T]$$

 $[n \rightarrow T, f \rightarrow +]$

$$[n \rightarrow T, f \rightarrow +]$$

$$[n \rightarrow T, f \rightarrow T]$$

$$[n \rightarrow T, f \rightarrow T]$$

 $[n \rightarrow T, f \rightarrow +]$

$$[n \rightarrow T, f \rightarrow +]$$

$$[n \rightarrow T, f \rightarrow L]$$

$$[n \rightarrow T, f \rightarrow +]$$

 $[n \rightarrow T, f \rightarrow T]$

$$[n \rightarrow T, f \rightarrow T]$$

$$[n \rightarrow T, f \rightarrow T]$$

$$[n \rightarrow T, f \rightarrow T]$$

$$[n \rightarrow T, f \rightarrow +]$$

$$[n \rightarrow T, f \rightarrow +]$$

$$[n \rightarrow \top, f \rightarrow \bot]$$

$$[n \rightarrow 1, t \rightarrow 1]$$

 $[n \rightarrow T, f \rightarrow +]$

$$[n \rightarrow T, f \rightarrow T]$$

$$[n \rightarrow T, f \rightarrow +]$$

 $[n \rightarrow T, f \rightarrow \bot]$

 $[n \rightarrow T, f \rightarrow T]$ Note: some of the constraints are mutually recursive in this example

```
[n \rightarrow T, f \rightarrow T]
```

```
[n \to T, f \to T][n \to T, f \to T]
```

 $[n \rightarrow T, f \rightarrow T]$

 $[n \rightarrow T, f \rightarrow T]$

(We shall later see how to improve precision for the loop condition)

The naive algorithm

Computing each new entry is done using the previous column

- Without using the entries in the current column that have already been computed!
- And many entries are likely unchanged from one column to the next!

Chaotic iteration

Recall that $f(x_1,...,x_n) = (f_1(x_1,...,x_n), ..., f_n(x_1,...,x_n))$

We now exploit the special structure of Lⁿ

 may require a higher number of iterations, but less work in each iteration

Correctness of chaotic iteration

- Let x^j be the value of x=(x₁, ..., x_n) in the j'th iteration of the naive algorithm
- Let <u>x^j</u> be the value of x=(x₁, ..., x_n) in the j'th iteration of the chaotic iteration algorithm
- By induction in j, show $\forall j: \underline{x^j} \sqsubseteq x^j$
- Chaotic iteration eventually terminates at a fixed point
- It must be identical to the result of the naive algorithm since that is the least fixed point

Towards a practical algorithm

- Computing ∃i:... in chaotic iteration is not practical
- Idea: predict i from the analysis and the structure of the program!
- Example: In sign analysis, when we have processed a CFG node v, process succ(v) next

The worklist algorithm (1/2)

- Essentially a specialization of chaotic iteration that exploits the special structure of f
- Most right-hand sides of f_i are quite sparse:
 constraints on CFG nodes do not involve all others
- Use a map:

dep: Nodes $\rightarrow 2^{Nodes}$

that for $v \in Nodes$ gives the variables w where v occurs on the right-hand side of the constraint for w

The worklist algorithm (2/2)

$$x_{1} = \bot; \dots x_{n} = \bot;$$

W = {v₁, ..., v_n};
while (W $\neq \emptyset$) {
v_i = W.*removeNext(*);
y = f_i(x₁, ..., x_n);
if (y $\neq x_{i}$) {
for (v_j \in dep(v_i)) W.add(v_j);
x_i = y;
}

Implementation: SimpleWorklistFixpointSolver

Further improvements

- Represent the worklist as a priority queue
 - find clever heuristics for priorities
- Look at the graph of dependency edges:
 - build strongly-connected components
 - solve constraints bottom-up in the resulting DAG

Transfer functions

• The constraint functions in dataflow analysis usually have this structure:

 $\llbracket v \rrbracket = t_v(JOIN(v))$ where $t_v: States \rightarrow States$ is called the **transfer function** for v

• Example:

 $\llbracket x = E \rrbracket = JOIN(v)[x \mapsto eval(JOIN(v), E)]$ = t_v(JOIN(v))

where

 $t_v(s) = s[x \mapsto eval(s, E)]$

Sign Analysis, continued...

- Another improvement of the worklist algorithm:
 - only add the entry node to the worklist initially
 - then let dataflow propagate through the program according to the constraints...
- Now, what if the constraint rule for variable declarations was:
 [[var x₁, ..., x_n]] = JOIN(v)[x₁ ↦ ⊥, ..., x_n ↦ ⊥]

(would make sense if we treat "uninitialized" as "no value" instead of "any value")

- Problem: iteration would stop before the fixpoint!
- Solution: replace Vars → Sign by lift(Vars → Sign)
 (allows us to distinguish between "unreachable" and "all variables are non-integers")
- This trick is also useful for context-sensitive analysis! (later...)