
Anders Møller & Michael I. Schwartzbach
Computer Science, Aarhus University

Static Program Analysis
Part 4 – flow sensitive analyses

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Agenda

2

• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis

Constant propagation optimization

3

var x,y,z;

x = 27;

y = input;

z = 54+y;

if (0) { y=z-3; } else { y=12 }

output y;

var x,y,z;
x = 27;
y = input,
z = 2*x+y;
if (x<0) { y=z-3; } else { y=12 }
output y;

var y;

y = input;

output 12;

Constant propagation analysis

• Determine variables with a constant value
• Flat lattice:

⊤

-1 0 1 2 3-2-3

4

⊥

Constraints for constant propagation

• Essentially as for the Sign analysis…

• Abstract operator for addition:
⊥ if n=⊥ ∨ m=⊥

+(n,m) = ⊤ else if n=⊤ ∨ m=⊤
n+m otherwise

5

Agenda

6

• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis

Liveness analysis

• A variable is live at a program point if its current value
may be read in the remaining execution

• This is clearly undecidable, but the property can be
conservatively approximated

• The analysis must only answer “dead”
if the variable is really dead
– no need to store the values of dead variables

7

A lattice for liveness

A powerset lattice of program variables

L = (2{x,y,z}, Í)

{x,y,z}

{x,y}

{x}

{x,z}{y,z}

{y} {z}

Æ

the trivial answer

8

var x,y,z;

x = input;

while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

The control flow graph

z = x-4

x = input x > 1 y = x/2 y > 3 x = x-y

var x,y,z

z > 0 x = x/2

z = z-1

output x

9

Setting up

• For every CFG node, v, we have a variable ⟦v⟧:
– the subset of program variables that are live at the

program point before v

• Since the analysis is conservative, the computed sets
may be too large

• Auxiliary definition:

JOIN(v) = È⟦w⟧
wÎsucc(v)

v

w1 w2

wk

10

• For the exit node:
⟦exit⟧ = Æ

• For conditions and output:
⟦	if (E) ⟧ = ⟦	output E ⟧ = JOIN(v) È vars(E)

• For assignments:
⟦ x = E ⟧ = JOIN(v) \ {x} È vars(E)

• For variable declarations:
⟦	var x1, ..., xn ⟧ = JOIN(v) \ {x1, ..., xn}

• For all other nodes:
⟦v⟧ = JOIN(v)

vars(E) = variables occurring in E

right-hand sides are monotone
since JOIN is monotone, and …

11

Liveness constraints

Generated constraints

12

⟦var x,y,z⟧ = ⟦z=input⟧ \ {x,y,z}
⟦x=input⟧ = ⟦x>1⟧ \ {x}
⟦x>1⟧ = (⟦y=x/2⟧È ⟦output x⟧) È {x}
⟦y=x/2⟧ = (⟦y>3⟧ \ {y}) È {x}
⟦y>3⟧ = ⟦x=x-y⟧È ⟦z=x-4⟧È {y}
⟦x=x-y⟧ = (⟦z=x-4⟧ \ {x}) È {x,y}
⟦z=x-4⟧ = (⟦z>0⟧ \ {z}) È {x}
⟦z>0⟧ = ⟦x=x/2⟧È ⟦z=z-1⟧È {z}
⟦x=x/2⟧ = (⟦z=z-1⟧ \ {x}) È {x}
⟦z=z-1⟧ = (⟦x>1⟧ \ {z}) È {z}
⟦output x⟧ = ⟦exit⟧È {x}
⟦exit⟧ = Æ

Least solution

Many non-trivial answers!

13

⟦entry⟧ = Æ
⟦var x,y,z⟧ = Æ
⟦x=input⟧ = Æ
⟦x>1⟧ = {x}
⟦y=x/2⟧ = {x}
⟦y>3⟧ = {x,y}
⟦x=x-y⟧ = {x,y}
⟦z=x-4⟧ = {x}

⟦z>0⟧ = {x,z}
⟦x=x/2⟧ = {x,z}
⟦z=z-1⟧ = {x,z}
⟦output x⟧ = {x}
⟦exit⟧ = Æ

Optimizations

• Variables y and z are never simultaneously live
Þ they can share the same memory location

• The value assigned in z=z-1 is never read
Þ the assignment can be skipped

14

var x,yz;

x = input;

while (x>1) {

yz = x/2;

if (yz>3) x = x-yz;

yz = x-4;

if (yz>0) x = x/2;

}

output x;

var x,y,z;

x = input;

while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

• better register allocation
• a few clock cycles saved

Time complexity
(for the naive algorithm)

• With n CFG nodes and k variables:
– the lattice Ln has height k×n
– so there are at most k×n iterations

• Subsets of Vars (the variables in the program)
can be represented as bitvectors:
– each element has size k
– each È, \, = operation takes time O(k)

• Each iteration uses O(n) bitvector operations:
– so each iteration takes time O(k×n)

• Total time complexity: O(k2n2)

• Exercise: what is the complexity for the worklist algorithm?
15

Agenda

16

• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis

Available expressions analysis

• A (nontrivial) expression is available at a program
point if its current value has already been computed
earlier in the execution

• The approximation generally includes too few
expressions
– the analysis can only report “available” if the expression

is definitely available
– no need to re-compute available expressions

(e.g. common subexpression elimination)

17

A lattice for available expressions

A reverse powerset lattice of nontrivial expressions

L = (2{a+b, a*b, y>a+b, a+1}, Ê)

18

var x,y,z,a,b;

z = a+b;

y = a*b;

while (y > a+b) {

a = a+1;

x = a+b;

}

Reverse powerset lattice

{a+b, y>a+b}

{a+b, a*b, y>a+b} {a+b, a*b, a+1} {a+b, y>a+b, a+1} {a*b, y>a+b, a+1}

{a+b, a*b}

{a+b, a*b, y>a+b, a+1}

{a+b, a+1} {a*b, y>a+b} {a*b, a+1} {y>a+b, a+1}

{a+b} {a*b} {y>a+b} {a+1}

Æ

the trivial answer

19

The flow graph

var x,y,z,a,b

z=a+b

y=a*b

y>a+b

a=a+1

x=a+b

20

Setting up

• For every CFG node, v, we have a variable ⟦v⟧:
– the subset of program variables that are available at the

program point after v

• Since the analysis is conservative, the computed sets
may be too small

• Auxiliary definition:

JOIN(v) = Ç⟦w⟧
wÎpred(v) v

w1

w2

wk

21

Auxiliary functions

• The function X¯x removes all expressions from X
that contain a reference to the variable x

• The function exps(E) is defined as:
– exps(intconst) = Æ
– exps(x) = Æ
– exps(input) = Æ
– exps(E1 op E2) = {E1 op E2} È exps(E1) È exps(E2)

but don’t include expressions containing input

22

Availability constraints

• For the entry node:
⟦entry⟧ = Æ

• For conditions and output:
⟦	if (E) ⟧ = ⟦	output E ⟧ = JOIN(v) È exps(E)

• For assignments:
⟦ x = E ⟧ = (JOIN(v) È exps(E))¯x

• For any other node v:
⟦v⟧ = JOIN(v)

23

Generated constraints

24

⟦entry⟧ = Æ
⟦var x,y,z,a,b⟧ = ⟦entry⟧
⟦z=a+b⟧ = exps(a+b)¯z
⟦y=a*b⟧ = (⟦z=a+b⟧È exps(a*b))¯y
⟦y>a+b⟧ = (⟦y=a*b⟧Ç ⟦x=a+b⟧) È exps(y>a+b)
⟦a=a+1⟧ = (⟦y>a+b⟧È exps(a+1))¯a
⟦x=a+b⟧ = (⟦a=a+1⟧È exps(a+b))¯x
⟦exit⟧ = ⟦y>a+b⟧

Least solution

Again, many nontrivial answers!

25

⟦entry⟧ = Æ
⟦var x,y,z,a,b⟧ = Æ
⟦z=a+b⟧ = {a+b}
⟦y=a*b⟧ = {a+b, a*b}
⟦y>a+b⟧ = {a+b, y>a+b}
⟦a=a+1⟧ = Æ
⟦x=a+b⟧ = {a+b}
⟦exit⟧ = {a+b}

Optimizations

• We notice that a+b is available before the loop
• The program can be optimized (slightly):

26

var x,y,z,a,b,aplusb;

aplusb = a+b;

z = aplusb;

y = a*b;

while (y > aplusb) {

a = a+1;

aplusb = a+b;

x = aplusb;

}

var x,y,z,a,b;

z = a+b;

y = a*b;

while (y > a+b) {

a = a+1;

x = a+b;

}

Agenda

27

• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis

Very busy expressions analysis

• A (nontrivial) expression is very busy if it will definitely
be evaluated before its value changes

• The approximation generally includes too few
expressions
– the answer “very busy” must be the true one
– very busy expressions may be pre-computed

(e.g. loop hoisting)

• Same lattice as for available expressions

28

Setting up

• For every CFG node, v, we have a variable ⟦v⟧:
– the subset of program variables that are very busy at the

program point before v

• Since the analysis is conservative, the computed sets
may be too small

• Auxiliary definition:

JOIN(v) = Ç⟦w⟧
wÎsucc(v)

v

w1 w2

wk

29

Very busy constraints

• For the exit node:
⟦exit⟧ = Æ

• For conditions and output:
⟦	if (E) ⟧ = ⟦	output E ⟧ = JOIN(v) È exps(E)

• For assignments:
⟦ x = E ⟧ = JOIN(v)¯x È exps(E)

• For all other nodes:
⟦v⟧ = JOIN(v)

30

An example program

The analysis shows that a*b is very busy

31

var x,a,b;

x = input;

a = x-1;

b = x-2;

while (x > 0) {

output a*b-x;

x = x-1;

}

output a*b;

Code hoisting

32

var x,a,b;

x = input;

a = x-1;

b = x-2;

while (x > 0) {

output a*b-x;

x = x-1;

}

output a*b;

var x,a,b,atimesb;

x = input;

a = x-1;

b = x-2;

atimesb = a*b;

while (x > 0) {

output atimesb-x;

x = x-1;

}

output atimesb;

Agenda

33

• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis

Reaching definitions analysis

• The reaching definitions for a program point are
those assignments that may define the current
values of variables

• The conservative approximation may include too
many possible assignments

34

A lattice for reaching definitions

The powerset lattice of assignments
L = (2{x=input, y=x/2, x=x-y, z=x-4, x=x/2, z=z-1},Í)

35

var x,y,z;

x = input;

while (x > 1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

Reaching definitions constraints

• For assignments:
⟦ x = E ⟧ = JOIN(v)¯x È { x = E }

• For all other nodes:
⟦v⟧ = JOIN(v)

• Auxiliary definition:

JOIN(v) = È⟦w⟧

• The function X¯x removes assignments to x from X

wÎpred(v)
v

w1

w2

wk

36

Def-use graph

Reaching definitions define the def-use graph:
– like a CFG but with edges from def to use nodes
– basis for dead code elimination and code motion

x>1

x=input

y=x/2

y>3

x=x-y

z=x-4

z>0 x=x/2

z=z-1

output x

37

Forward vs. backward

• A forward analysis:
– computes information about the past behavior
– examples: available expressions, reaching definitions

• A backward analysis:
– computes information about the future behavior
– examples: liveness, very busy expressions

38

May vs. must

• A may analysis:
– describes information that is possibly true
– an over-approximation
– examples: liveness, reaching definitions

• A must analysis:
– describes information that is definitely true
– an under-approximation
– examples: available expressions, very busy expressions

39

Classifying analyses
forward backward

may

example: reaching definitions

⟦v⟧ describes state after v

JOIN(v) = ⨆⟦w⟧ = È⟦w⟧

example: liveness

⟦v⟧ describes state before v

JOIN(v) = ⨆⟦w⟧ = È⟦w⟧

must

example: available expressions

⟦v⟧ describes state after v

JOIN(v) = ⨆⟦w⟧ = Ç⟦w⟧

example: very busy expressions

⟦v⟧ describes state before v

JOIN(v) = ⨆⟦w⟧ = Ç⟦w⟧

wÎsucc(v)

wÎpred(v)

wÎpred(v)

wÎsucc(v)

wÎsucc(v)wÎpred(v)

wÎpred(v) wÎsucc(v)

40

Agenda

41

• Constant propagation analysis
• Live variables analysis
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis

Initialized variables analysis

• Compute for each program point those variables
that have definitely been initialized in the past

• (Called definite assignment analysis in Java and C#)
• Þ forward must analysis
• Reverse powerset lattice of all variables

JOIN(v) = Ç⟦w⟧

• For assignments: ⟦ x = E ⟧ = JOIN(v) È {x}
• For all others: ⟦v⟧ = JOIN(v)

wÎpred(v)

42

