Static Program Analysis
Part 4 – flow sensitive analyses

http://cs.au.dk/~amoeller/spa/

Anders Møller & Michael I. Schwartzbach
Computer Science, Aarhus University
Agenda

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis
Constant propagation optimization

```javascript
var x, y, z;
x = 27;
y = input;
z = 2*x+y;
if (x<0) { y=z-3; } else { y=12 }
output y;
```

```javascript
var x, y, z;
x = 27;
y = input;
z = 54+y;
if (0) { y=z-3; } else { y=12 }
output y;
```

```javascript
var y;
y = input;
output 12;
```
Constant propagation analysis

- Determine variables with a constant value
- Flat lattice:
Constraints for constant propagation

- Essentially as for the Sign analysis...

- Abstract operator for addition:

$$\overline{+}(n,m) = \begin{cases}
\bot & \text{if } n=\bot \lor m=\bot \\
T & \text{else if } n=T \lor m=T \\
n+m & \text{otherwise}
\end{cases}$$
Agenda

• Constant propagation analysis
• **Live variables analysis**
• Available expressions analysis
• Very busy expressions analysis
• Reaching definitions analysis
• Initialized variables analysis
Liveness analysis

• A variable is *live* at a program point if its current value may be read in the remaining execution.

• This is clearly undecidable, but the property can be conservatively approximated.

• The analysis must only answer “*dead*” if the variable is really dead:
 – no need to store the values of dead variables.
A lattice for liveness

A powerset lattice of program variables

```
var x, y, z;
x = input;
while (x > 1) {
    y = x / 2;
    if (y > 3) x = x - y;
    z = x - 4;
    if (z > 0) x = x / 2;
    z = z - 1;
}
output x;
```

\[L = (2^{\{x,y,z\}}, \subseteq) \]

the trivial answer
The control flow graph

```plaintext
x = input

var x, y, z

x > 1

y = x/2

y > 3

x = x - y

z = x - 4

z > 0

x = x/2

z = z - 1

output x
```
Setting up

• For every CFG node, v, we have a variable \([v]\):
 – the subset of program variables that are live at the program point before \(v\)

• Since the analysis is conservative, the computed sets may be too large

• Auxiliary definition:

\[
JOIN(v) = \bigcup_{w \in succ(v)} [w]
\]
Liveness constraints

- For the exit node:
 \[
 \llbracket \text{exit} \rrbracket = \emptyset
 \]

- For conditions and output:
 \[
 \llbracket \text{if } (E) \rrbracket = \llbracket \text{output } E \rrbracket = \text{JOIN}(v) \cup \text{vars}(E)
 \]

- For assignments:
 \[
 \llbracket x = E \rrbracket = \text{JOIN}(v) \setminus \{x\} \cup \text{vars}(E)
 \]

- For variable declarations:
 \[
 \llbracket \text{var } x_1, \ldots, x_n \rrbracket = \text{JOIN}(v) \setminus \{x_1, \ldots, x_n\}
 \]

- For all other nodes:
 \[
 \llbracket v \rrbracket = \text{JOIN}(v)
 \]

\(\text{vars}(E) = \text{variables occurring in } E\)

right-hand sides are monotone since \(\text{JOIN}\) is monotone, and ...
Generated constraints

\[[\text{var } x, y, z] = [z=\text{input}] \setminus \{x, y, z\} \]
\[[x=\text{input}] = [x>1] \setminus \{x\} \]
\[[x>1] = ([y=x/2] \cup [\text{output } x]) \cup \{x\} \]
\[[y=x/2] = ([y>3] \setminus \{y\}) \cup \{x\} \]
\[[y>3] = [x=x-y] \cup [z=x-4] \cup \{y\} \]
\[[x=x-y] = ([z=x-4] \setminus \{x\}) \cup \{x, y\} \]
\[[z=x-4] = ([z>0] \setminus \{z\}) \cup \{x\} \]
\[[z>0] = [x=x/2] \cup [z=z-1] \cup \{z\} \]
\[[x=x/2] = ([z=z-1] \setminus \{x\}) \cup \{x\} \]
\[[z=z-1] = ([x>1] \setminus \{z\}) \cup \{z\} \]
\[[\text{output } x] = [\text{exit}] \cup \{x\} \]
\[[\text{exit}] = \emptyset \]
Least solution

Many non-trivial answers!
Optimizations

- Variables y and z are never simultaneously live
 ⇒ they can share the same memory location
- The value assigned in z=z-1 is never read
 ⇒ the assignment can be skipped

```plaintext
var x,y,z;
x = input;
while (x>1) {
    yz = x/2;
    if (yz>3) x = x-yz;
    yz = x-4;
    if (yz>0) x = x/2;
}
output x;
```

```plaintext
var x,y,z;
x = input;
while (x>1) {
    y = x/2;
    if (y>3) x = x-y;
    z = x-4;
    if (z>0) x = x/2;
    z = z-1;
}
output x;
```

- better register allocation
- a few clock cycles saved
Time complexity (for the naive algorithm)

- With n CFG nodes and k variables:
 - the lattice L^n has height $k \cdot n$
 - so there are at most $k \cdot n$ iterations

- Subsets of Vars (the variables in the program) can be represented as bitvectors:
 - each element has size k
 - each \cup, \setminus, $=$ operation takes time $O(k)$

- Each iteration uses $O(n)$ bitvector operations:
 - so each iteration takes time $O(k \cdot n)$

- Total time complexity: $O(k^2n^2)$

- Exercise: what is the complexity for the worklist algorithm?
Agenda

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis
Available expressions analysis

• A (nontrivial) expression is available at a program point if its current value has already been computed earlier in the execution.

• The approximation generally includes too few expressions:
 – the analysis can only report “available” if the expression is definitely available.
 – no need to re-compute available expressions (e.g. common subexpression elimination).
A lattice for available expressions

A reverse powerset lattice of nontrivial expressions

```
var x, y, z, a, b;
z = a + b;
y = a * b;
while (y > a + b) {
    a = a + 1;
    x = a + b;
}
```

$L = (2^{\{a+b, a*b, y>a+b, a+1\}, \subseteq})$
Reverse powerset lattice

∅

{a+b} {a*b} {y>a+b} {a+1}

{a+b, a*b} {a+b, y>a+b} {a+b, a+1} {a*b, y>a+b} {a*b, a+1} {y>a+b, a+1}

{a+b, a*b, y>a+b} {a+b, a*b, a+1} {a+b, y>a+b, a+1} {a*b, y>a+b, a+1}

{a+b, a*b, y>a+b, a+1}
The flow graph

```
var x, y, z, a, b

z = a + b

y = a * b

y > a + b

a = a + 1

x = a + b
```
Setting up

• For every CFG node, v, we have a variable $⟦v⟧$:
 – the subset of program variables that are available at the program point after v

• Since the analysis is conservative, the computed sets may be too small

• Auxiliary definition:

\[
JOIN(v) = \bigcap_{w \in \text{pred}(v)} ⟦w⟧
\]
Auxiliary functions

- The function $X \downarrow x$ removes all expressions from X that contain a reference to the variable x.

- The function $\text{exps}(E)$ is defined as:
 - $\text{exps}(\text{intconst}) = \emptyset$
 - $\text{exps}(x) = \emptyset$
 - $\text{exps}(\text{input}) = \emptyset$
 - $\text{exps}(E_1 \text{ op } E_2) = \{E_1 \text{ op } E_2\} \cup \text{exps}(E_1) \cup \text{exps}(E_2)$
 but don’t include expressions containing input.
Availability constraints

• For the entry node:
 \([\text{entry}] = \emptyset\)

• For conditions and output:
 \([\text{if } (E)] = [\text{output } E] = JOIN(v) \cup \text{exp}(E)\)

• For assignments:
 \([x = E] = (JOIN(v) \cup \text{exp}(E))\downarrow x\)

• For any other node v:
 \([v] = JOIN(v)\)
Generated constraints

\[
\begin{align*}
\llbracket entry \rrbracket &= \emptyset \\
\llbracket \text{var } x, y, z, a, b \rrbracket &= \llbracket entry \rrbracket \\
\llbracket z=a+b \rrbracket &= \text{exps}(a+b) \llbracket z \rrbracket \\
\llbracket y=a*b \rrbracket &= (\llbracket z=a+b \rrbracket \cup \text{exps}(a*b)) \llbracket y \rrbracket \\
\llbracket y>a+b \rrbracket &= (\llbracket y=a*b \rrbracket \cap \llbracket x=a+b \rrbracket) \cup \text{exps}(y>a+b) \\
\llbracket a=a+1 \rrbracket &= (\llbracket y>a+b \rrbracket \cup \text{exps}(a+1)) \llbracket a \rrbracket \\
\llbracket x=a+b \rrbracket &= (\llbracket a=a+1 \rrbracket \cup \text{exps}(a+b)) \llbracket x \rrbracket \\
\llbracket exit \rrbracket &= \llbracket y>a+b \rrbracket
\end{align*}
\]
Least solution

\[
\begin{align*}
[entry] &= \emptyset \\
[var\ x, y, z, a, b] &= \emptyset \\
[z = a + b] &= \{a + b\} \\
[y = a \times b] &= \{a + b, a \times b\} \\
[y > a + b] &= \{a + b, y > a + b\} \\
[a = a + 1] &= \emptyset \\
[x = a + b] &= \{a + b\} \\
[exit] &= \{a + b\}
\end{align*}
\]

Again, many nontrivial answers!
Optimizations

• We notice that $a+b$ is available before the loop
• The program can be optimized (slightly):

```javascript
var x, y, z, a, b;
z = a+b;
y = a*b;
while (y > a+b) {
a = a+1;
x = a+b;
}
```

```javascript
var x, y, z, a, b, aplusb;
aplusb = a+b;
z = aplusb;
y = a*b;
while (y > aplusb) {
a = a+1;
aplusb = a+b;
x = aplusb;
}
```
Agenda

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis
A (nontrivial) expression is very busy if it will definitely be evaluated before its value changes.

The approximation generally includes too few expressions:
- the answer “very busy” must be the true one
- very busy expressions may be pre-computed (e.g. loop hoisting)

Same lattice as for available expressions.
Setting up

• For every CFG node, v, we have a variable $[v]$:
 – the subset of program variables that are very busy at the program point before v

• Since the analysis is conservative, the computed sets may be too small

• Auxiliary definition:

$$JOIN(v) = \bigcap_{w \in succ(v)} [w]$$
Very busy constraints

- For the exit node:
 \[[exit] = \emptyset\]

- For conditions and output:
 \[\lbrack \text{if } (E) \rbrack = \lbrack \text{output } E \rbrack = JOIN(v) \cup \text{exps}(E)\]

- For assignments:
 \[\lbrack x = E \rbrack = JOIN(v) \downarrow x \cup \text{exps}(E)\]

- For all other nodes:
 \[\lbrack v \rbrack = JOIN(v)\]
An example program

The analysis shows that $a \times b$ is very busy

```javascript
var x,a,b;
x = input;
a = x-1;
b = x-2;
while (x > 0) {
  output a*b-x;
  x = x-1;
}
output a*b;
```
Code hoisting

```javascript
var x,a,b;
x = input;
a = x-1;
b = x-2;
while (x > 0) {
    output a*b-x;
    x = x-1;
}
output a*b;
```

```javascript
var x,a,b,atimesb;
x = input;
a = x-1;
b = x-2;
atimesb = a*b;
while (x > 0) {
    output atimesb-x;
    x = x-1;
}
output atimesb;
```
Agenda

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis
Reaching definitions analysis

• The *reaching definitions* for a program point are those assignments that may define the current values of variables

• The conservative approximation may include *too many* possible assignments
A lattice for reaching definitions

The powerset lattice of assignments

\[L = \left(2^\{x=\text{input}, y=x/2, x=x-y, z=x-4, x=x/2, z=z-1\}, \subseteq \right) \]

```javascript
var x,y,z;
x = input;
while (x > 1) {
  y = x/2;
  if (y>3) x = x-y;
  z = x-4;
  if (z>0) x = x/2;
  z = z-1;
}
output x;
```
Reaching definitions constraints

• For assignments:
 \[\llbracket x = E \rrbracket = JOIN(v) \downarrow x \cup \{ x = E \} \]

• For all other nodes:
 \[\llbracket v \rrbracket = JOIN(v) \]

• Auxiliary definition:
 \[JOIN(v) = \bigcup_{w \in \text{pred}(v)} \llbracket w \rrbracket \]

• The function \(X \downarrow x \) removes assignments to \(x \) from \(X \)
Def-use graph

Reaching definitions define the def-use graph:
- like a CFG but with edges from def to use nodes
- basis for *dead code elimination* and *code motion*

```plaintext
x = input

x > 1
y = x / 2
y > 3

x = x - y
z = x - 4
z > 0

x = x / 2

z = z - 1

output x
```
Forward vs. backward

• A *forward* analysis:
 – computes information about the *past* behavior
 – examples: available expressions, reaching definitions

• A *backward* analysis:
 – computes information about the *future* behavior
 – examples: liveness, very busy expressions
May vs. must

• A *may* analysis:
 – describes information that is *possibly* true
 – an *over*-approximation
 – examples: liveness, reaching definitions

• A *must* analysis:
 – describes information that is *definitely* true
 – an *under*-approximation
 – examples: available expressions, very busy expressions
Classifying analyses

<table>
<thead>
<tr>
<th></th>
<th>forward</th>
<th>backward</th>
</tr>
</thead>
<tbody>
<tr>
<td>may</td>
<td>example: reaching definitions</td>
<td>example: liveness</td>
</tr>
<tr>
<td></td>
<td>$⟦v⟧$ describes state after v</td>
<td>$⟦v⟧$ describes state before v</td>
</tr>
<tr>
<td></td>
<td>$\text{JOIN}(v) = \bigcup_{w \in \text{pred}(v)} [w] = \bigcup_{w \in \text{pred}(v)} [w]$</td>
<td>$\text{JOIN}(v) = \bigcup_{w \in \text{succ}(v)} [w] = \bigcup_{w \in \text{succ}(v)} [w]$</td>
</tr>
<tr>
<td>must</td>
<td>example: available expressions</td>
<td>example: very busy expressions</td>
</tr>
<tr>
<td></td>
<td>$⟦v⟧$ describes state after v</td>
<td>$⟦v⟧$ describes state before v</td>
</tr>
<tr>
<td></td>
<td>$\text{JOIN}(v) = \bigcup_{w \in \text{pred}(v)} [w] = \bigcap_{w \in \text{pred}(v)} [w]$</td>
<td>$\text{JOIN}(v) = \bigcup_{w \in \text{succ}(v)} [w] = \bigcap_{w \in \text{succ}(v)} [w]$</td>
</tr>
</tbody>
</table>
Agenda

- Constant propagation analysis
- Live variables analysis
- Available expressions analysis
- Very busy expressions analysis
- Reaching definitions analysis
- Initialized variables analysis
Initialized variables analysis

• Compute for each program point those variables that have *definitely* been initialized in the *past*
• (Called *definite assignment* analysis in Java and C#)
• \Rightarrow forward must analysis
• Reverse powerset lattice of all variables

$$JOIN(v) = \bigcap_{w \in pred(v)} [w]$$

• For assignments: $[x = E] = JOIN(v) \cup \{x\}$
• For all others: $[v] = JOIN(v)$