
Anders Møller & Michael I. Schwartzbach
Computer Science, Aarhus University

Static Program Analysis
Part 6 – path sensitivity

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Information in conditions

The interval analysis (with widening) concludes:
x = [-¥,¥], y = [0,¥], z = [-¥,¥]

2

x = input;
y = 0;
z = 0;
while (x>0) {
z = z+x;
if (17>y) { y = y+1; }
x = x-1;

}

Modeling conditions

Add artifical “assert” statements:

The statement assert(E) models that
E is true in the current program state
• it causes a runtime error otherwise
• but we only insert it where the condition will

always be true

3

Encoding conditions

4

x = input;
y = 0;
z = 0;
while (x>0) {
assert(x>0);
z = z+x;
if (17>y) { assert(17>y); y = y+1; }
else { assert(!(17>y)); }
x = x-1;

}
assert(!(x>0));

preserves semantics since asserts are guarded by conditions

(alternatively, we could add dataflow constraints on the CFG edges)

Constraints for assert

A trivial but sound constraint:
⟦v⟧ = JOIN(v)

A non-trivial constraint for assert(x>E):
⟦v⟧ = JOIN(v)[x®gt(JOIN(v)(x),eval(JOIN(v),E))]

where
gt([l1,h1],[l2,h2]) = [l1,h1] ⊓	[l2+1,¥]

this computes the interval for x that is consistent with
the assert(x>E)

5

Constraints for assert

A trivial but sound constraint:
⟦v⟧ = JOIN(v)

A non-trivial constraint for assert(x>E):
⟦v⟧ = JOIN(v)[x®gt(JOIN(v)(x),eval(JOIN(v),E))]

where
gt([l1,h1],[l2,h2]) = [l1,h1] ⊓	[l2+1,¥]

For example:

gt([2,4],[0,6]) = [2,4] ⊓	[1,¥]=[2,4]
gt([0,6],[2,4]) = [0,6] ⊓	[3,¥]=[3,6]
gt([2,2],[3,4]) = [2,2] ⊓	[4,¥]= ⊥

6

Constraints for assert

A trivial but sound constraint:
⟦v⟧ = JOIN(v)

A non-trivial constraint for assert(x>E):
⟦v⟧ = JOIN(v)[x®gt(JOIN(v)(x),eval(JOIN(v),E))]

where
gt([l1,h1],[l2,h2]) = [l1,h1] ⊓	[l2+1,¥]

Similar constraints can be defined for variants
gte([l1,h1],[l2,h2]) = [l1,h1] ⊓	[l2,¥]
lte([l1,h1],[l2,h2]) = [l1,h1] ⊓	[-¥,h2]

lt([l1,h1],[l2,h2]) = [l1,h1] ⊓	[-¥,h2-1]

7

Exploiting conditions

The interval analysis now concludes:
x = [-¥,0], y = [0,17], z = [0,¥]

8

x = input;
y = 0;
z = 0;
while (x>0) {
assert(x>0);
z = z+x;
if (17>y) { assert(17>y); y = y+1; }
else { assert(!(17>y)); }
x = x-1;

}
assert(!(x>0));

Branch correlations

• With assert we have a simple form of path sensitivity
(sometimes called control sensitivity)

• But it is insufficient to handle correlation of branches:

9

if (17 > x) { ... }
... // statements that do not change x
if (17 > x) { ... }
...

Open and closed files

• Built-in functions open() and close() on a file

• Requirements:
– never close a closed file
– never open an open file

• We want a static analysis to check this...
(for simplicity, let us assume there is only one file)

openclosed

open()

close()

10

A tricky example

11

if (condition) {
open();
flag = 1;

} else {
flag = 0;

}
...
if (flag) {

close();
}

The naive analysis (1/2)

• The lattice models the status of the file:

L = (2{open,closed},Í)

• For every CFG node, v, we have a constraint variable
⟦v⟧ denoting the status after v

• JOIN(v) = ⋃	⟦w⟧

{open,closed}

{open} {closed}

Æ

wÎpred(v)

12

The naive analysis (2/2)

• Constraints for interesting statements:
⟦entry⟧ = {closed}
⟦open()⟧ = {open}
⟦close()⟧ = {closed}

• For all other CFG nodes:
⟦v⟧ = JOIN(v)

• Before the close() statement
the analysis concludes that the
file is {open,closed} L

13

if (condition) {
open();
flag = 1;

} else {
flag = 0;

}
...
if (flag) {
close();

}

The slightly less naive analysis

• We obviously need to keep track of the flag variable
• Our second attempt is the lattice:

L = (2{open,closed}´2{flag=0,flag¹0},Í´Í)

• Additionally, we add assert(...)
to model conditionals

• Even so, we still only know that the
file is {open,closed} and that
flag is {flag=0,flag¹0} L

14

if (condition) {
open();
flag = 1;

} else {
flag = 0;

}
...
if (flag) {
close();

}

Enhanced program

15

if (condition) {
assert(condition);
open();
flag = 1;

} else {
assert(!condition);
flag = 0;

}
...
if (flag) {
assert(flag);
close();

} else {
assert(!flag);

}

Relational analysis

• We need an analysis that keeps track of relations
between variables

• One approach is to maintain multiple abstract states
per program point, one for each path context

• For the file example we need the lattice:

L = Paths ® 2{open,closed}

where Paths = {flag=0,flag¹0} is the set of
path contexts

16

(note: isomorphic to 2Paths´{open,closed})

Relational constraints (1/2)

• For the file statements:
⟦entry⟧ = lp.{closed}
⟦open()⟧ = lp.{open}
⟦closed()⟧ = lp.{closed}

• For flag assignments:
⟦flag = 0⟧ = [flag=0®⋃ JOIN(v)(p), flag¹0®Æ]

⟦flag = n⟧ = [flag¹0®⋃ JOIN(v)(p), flag=0®Æ]

⟦flag = E⟧ = lq. ⋃ JOIN(v)(p)

pÎP

pÎP

”infeasible”

pÎP

17

where n is a non-0
constant number

for any other E

Relational constraints (2/2)

• For assert statements:

⟦assert(flag)⟧ =
[flag¹0®JOIN(v)(flag¹0), flag=0®Æ]

⟦assert(!flag)⟧ =
[flag=0®JOIN(v)(flag=0), flag¹0®Æ]

• For all other CFG nodes:

⟦v⟧ = JOIN(v) = lp. ⋃	⟦w⟧(p)
wÎpred(v)

18

Generated constraints

cÎC

cÎC

19

⟦entry⟧ = lp.{closed}
⟦condition⟧ = ⟦entry⟧
⟦assert(condition)⟧ = ⟦condition⟧
⟦open()⟧ = lp.{open}
⟦flag = 1⟧ = [flag¹0®⋃ ⟦open()⟧(p), flag=0®Æ]
⟦assert(!condition)⟧ = ⟦condition⟧
⟦flag = 0⟧ = [flag=0®⋃	⟦assert(!condition)⟧(p), flag¹0®Æ]
⟦...⟧ = lp.(⟦flag = 1⟧(p) ⋃ ⟦flag = 0⟧(p))
⟦flag⟧ = ⟦...⟧
⟦assert(flag)⟧ = ⟦flag¹0®⟦flag⟧(flag¹0), flag=0®Æ]
⟦close()⟧ = lp.{closed}
⟦assert(!flag)⟧ = [flag=0®⟦flag⟧(flag=0), flag¹0®Æ]
⟦exit⟧ = lp.(⟦close()⟧(p) ⋃ ⟦assert(!flag)⟧(p))

Minimal solution

We now know the file is open before close() J

flag = 0 flag ¹ 0

⟦entry⟧ {closed} {closed}

⟦condition⟧ {closed} {closed}

⟦assert(condition)⟧ {closed} {closed}

⟦open()⟧ {open} {open}

⟦flag = 1⟧ Æ {open}

⟦assert(!condition)⟧ {closed} {closed}

⟦flag = 0⟧ {closed} Æ

⟦...⟧ {closed} {open}

⟦flag⟧ {closed} {open}

⟦assert(flag)⟧ Æ {open}

⟦close()⟧ {closed} {closed}

⟦assert(!flag)⟧ {closed} Æ

⟦exit⟧ {closed} {closed}

20

Challenges
• The static analysis designer must choose Paths
– often as boolean combinations of predicates from conditionals
– iterative refinement (e.g. counter-example guided

abstraction refinement) can be used for gradually
finding relevant predicates

• Exponential blow-up:
– for k predicates, we have 2k different contexts
– redundancy often cuts this down

• Reasoning about assert:
– how to update the lattice elements with sufficient precision?
– possibly involves heavy-weight theorem proving

21

Improvements

• Run auxiliary analyses first, for example:
– constant propagation
– sign analysis

will help in handling flag assignments

• Dead code propagation, change
⟦open()⟧ = lp.{open}

into the still sound but more precise
⟦open()⟧ = lp.if JOIN(v)(p)=Æ then Æ else {open}

22

