Static Program Analysis
Part 7 — interprocedural analysis

http://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael I. Schwartzbach
Computer Science, Aarhus University

http://cs.au.dk/~amoeller/spa/

Interprocedural analysis

Analyzing the body of a single function:

— intraprocedural analysis

Analyzing the whole program with function calls:

— interprocedural analysis

For now, we consider TIP without function pointers
and indirect calls

A naive approach:

— analyze each function in isolation
— be maximally pessimistic about results of function calls
— rarely sufficient precision...

CFG for whole programs

The idea:
e construct a CFG for each function

* then glue them together to reflect function calls
and returns

We need to take care of:
e parameter passing
* return values

* values of local variables across calls

(including recursive functions, so not enough to
assume unique variable names)

A simplifying assumption

e Assume that all function calls are of the form

X = f(E;, ..., E.);

* This can always be obtained by normalization

Interprocedural CFGs (1/3)

Split each original call node

l

X - -F(El’ cee y En)
into two nodes: l
41 = F(Ey oy E)
|
Ts-ol X =
7
a special edge that l

connects the call node
with its after-call node

<~—

K

the “call node”

the “after-call node”

Interprocedural CFGs (2/3)

Change each return node

l

return E

Into an assignment:

l

result = E

(where resul t is a fresh variable)

Interprocedural CFGs (3/3)

Add call edges and return edges:

function f(bq,
function g(a;, .., a,)
Re RTINS —
\
TTm-six = 1 /

ey bR)

Constraints

* For call/entry nodes:

— be careful to model evaluation of all the actual parameters
before binding them to the formal parameter names

* For after-call/exit nodes:
— like an assignment: X=result

— but also restore local variables from before the call
using the call™~after-call edge

* The details depend on the specific analysis...

Example: interprocedural sign analysis

e Recall the intraprocedural sign analysis...
e Lattice for abstract values:

-
N
Sign= + - 0
~.

1

* Lattice for abstract states:
Vars — Sign

Example: interprocedural sign analysis

e Constraint for entry node v of function f(b4, ..., b,):
[v] = U L[b;—eval([w],E7), ..., by—eval([w],E)]

wepred(v
RIS where E"is i’th argument at w

with call node v’:
[v] = [V][X—=>[w](result)]

where wepred(v)
v
o~ 1= f(E1, .., En)

: /
(Recall: no global variables, no heap, >~ J

and no higher-order functions) \ result = E

10

The worklist algorithm
(original version)

Xy = 1; ... X, =1
W= {vy, ..., Vu}
while (Wz&) {

V; = W.removeNext()

y = ficxlv = Xn)
1t (y=x;) {
for (v; e dep(v;)) {
W.add(v;)
}
Xi =Y
}

¥

W W

w...; :

12

The worklist algorithm
(alternative version)

Xy =15 ... X5, =1 V@
W= {vy, ..., Vu}

while (W22) { VAR

Vi: = W.removeNext() Wi ..o Wy
y = t;(x;)
propagate(y,v;) {
for (Vj = a’ep(vi)) { Z = X; Uy J
propagate(y,Vv;) 1f (z;x-) {
J
} Xj = 2
} W.add(Vj)

1

Implementation: workl1istFixpointPropagationsolver

J

13

Agenda

* |Interprocedural analysis

* Context-sensitive
interprocedural analysis

14

Interprocedurally invalid paths

15

Example

What is the sign of the return value of g?

f(z) {

return z*42;

}

g {

var X,Y;

x = f(0);

y = t(87);
return X + Y,

Our current analysis says “T”

16

Function cloning
(alternatively, function inlining)

Clone functions such that each function has
only one callee

Can avoid interprocedurally invalid paths ©
For high nesting depths, gives exponential blow-up ®
Doesn’t work on (mutually) recursive functions ®

Use heuristics to determine when to apply
(trade-off between CFG size and precision)

17

Example, with cloning

What is the sign of the return value of g°?

f1(z1) {
return z1%42;

}

f2(z2) {
return z2+%42;

}

g0 {

var X,VY;

x = f1(0);

y = t2(87);
return x + y;

¥

18

Context sensitive analysis

* Function cloning provides a kind of context sensitivity
(also called polyvariant analysis)

* Instead of physically copying the function CFGs,
do it logically
e Replace the lattice for abstract states, States, by

Contexts — lift(States)

where Contexts is a set of call contexts

— the contexts are abstractions of the state at function entry
— Contexts must be finite to ensure finite height of the lattice

— the bottom element of lift(States) represents
“unreachable” contexts

* Different strategies for choosing the set Contexts...

19

One-level cloning

Let c4,...,C,, be the call nodes in the program
Define Contexts={c,,...,c,} U {€}

— each call node now defines its own “call context”
(using € to represent the call context at the main function)

— the context is then like the return address of the top-most
stack frame in the call stack

Same effect as one-level cloning, but without actually
copying the function CFGs

Usually straightforward to generalize the constraints
for a context insensitive analysis to this lattice

(Example: context-sensitive sign analysis — later...)

20

The call string approach

* Letc,,...,C,bethe call nodes in the program

* Define Contexts as the set of strings over {c,,...,C,.}
of length <k

— such a string represents the top-most k call locations
on the call stack

— the empty string € again represents the call context at
the main function

* For k=1 this amounts to one-level cloning

Implementation: CallstringSignAnalysis

21

Example:
interprocedural sign analysis with call strings (k=1)

Lattice for abstract states: Contexts — lift(Vars — Sign)
where Contexts={¢,C4,C5}

t(z) {

var tl,t2;

tl = z%6;

t2 = t1%*7: [¢ & unreachable,

return t2; <« cle 1[z~0, t1-0, t2-0],
} C2 - L[zm+, tlH+, t2|—>+]]

x = f(0); // cl
= f(87); // c2

<
I

What is an example program
that requires k=2
to avoid loss of precision? ,

Context sensitivity with call strings
function entry nodes, for k=1

Constraint for entry node v of function f(b,, ..., b,):
(if not ‘main’)

[[V]](C) = SVC\; v
wepred(v) A w
c=w A A o= fE, -, B

c’'€ Contexts = ‘\lg

. [unreachable if [w](c’) = unreachable
Sw _{J_[bl—mval([w](c’),Eq), ..., bp—eval([w](c’),En)] otherwise

23

Context sensitivity with call strings
after-call nodes, for k=1

with call node v’ and exit node wepred(v):

_ | unreachable if [v’](c) = unreachable V [w](v’) = unreachable
V) =1 v () X [w] (v') (result)] Sihere

1)
= (B, ..,
= = x = i
result = E
VoY
24

The functional approach

The call string approach considers control flow

— but why distinguish between two different call sites if
their abstract states are the same?

The functional approach instead considers data

In the most general form, choose
Contexts = States
(requires States to be finite)
Each element of the lattice States — lift(States)
is now a map m that provides an element m(x) from
States (or “unreachable”) for each possible x

where x describes the state at function entry

25

Example:

interprocedural sign analysis with the functional approach

Lattice for abstract states: Contexts — lift(Vars — Sign)
where Contexts = Vars — Sign

f(z) {

var tl,t2;

tl = Z#6:

£2 = t1%7: [L[z~0] » L[z—0, t1-0, t2-0],

AR ED L[zm+] > L[zH+, tlH+, t24],
} all other contexts — unreachable]
x = £(0);

y = £(87);

26

The functional approach

The lattice element for a function exit node is thus a
function summary that maps abstract function input to
abstract function output

This can be exploited at call nodes to skip function!
When entering a function with abstract state x:

— Consider the function summary s for that function

— If s(x) already has been computed, use that to model the entire
function body, then proceed directly to the after-call node

Avoids the problem with interprocedurally invalid paths!

...but may be expensive if States is large

Implementation: FunctionalSignAnalysis .

Context sensitivity with the

functional approach
function entry nodes

Constraint for entry node v of function f(b,, ..., b,):
(if not ‘main’)

Iv](c)= L Sy v
wepred(v) A
C = S\SV /\ I \ivf(El,¢..., En)

f
c’€ Contexts S < S h /

where s¢ is defined as before

28

Context sensitivity with the

functional approach
after-call nodes

with call node v’ and exit node wepred(v):

_ | unreachable if [v'](c) = unreachable V [w](s,) = unreachable
VI =1 vl o)X= [w (5.) (resuTt)] .

J
= f(Ei, ..,
= =3 X = i
result = E
VoY
29

