Static Program Analysis
Part 8 — control flow analysis

http://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael I. Schwartzbach
Computer Science, Aarhus University


http://cs.au.dk/~amoeller/spa/

Agenda

Control flow analysis for the
A-calculus

The cubic framework

Control flow analysis for TIP
with function pointers

Control flow analysis for
object-oriented languages




Control flow complications

* Function pointers in TIP complicate (Interprocedural)
CFG construction:
— several functions may be invoked at a call site
— this depends on the dataflow
— but dataflow analysis first requires a CFG

e Same situation for other features:
— higher-order functions (closures)
— a class hierarchy with objects and methods
— prototype objects with dynamic properties



Control flow analysis

* A control flow analysis approximates the CFG

— conservatively computes possible functions at call sites
— the trivial answer: all functions

* Control flow analysis is usually flow-insensitive:

— it is based on the AST
— the CFG is not available yet
— a subsequent dataflow analysis may use the CFG

e Alternative: use flow-sensitive analysis

— potentially on-the-fly, during dataflow analysis



CFA for the lambda calculus

The pure lambda calculus

E — AX.E (function definition)
| E; E, (function application)
| x (variable reference)

Assume all A-bound variables are distinct

An abstract closure Ax abstracts the function Ax.E
in all contexts (i.e., the values of free variables)

Goal: for each call site E,E, determine the possible
functions for E; from the set {Ax;, Ax,, ..., AX,}



Closure analysis

A flow-insensitive analysis that tracks function values:

* For every AST node, v, we introduce a variable [Jv]
ranging over subsets of abstract closures

* For Ax.E we have the constraint
Ax € [Ax.E]
* For E,E, we have the conditional constraint

M € [Es] = ([E2] < [¥] A [E] < [E:E2])
for every function Ax.E



Agenda

Control flow analysis for the
A-calculus

The cubic framework

Control flow analysis for TIP
with function pointers

Control flow analysis for
object-oriented languages




The cubic framework

We have a set of tokens {t, t,, ..., t;}

We have a collection of variables {x,, ..., x,}
ranging over subsets of tokens

A collection of constraints of these forms:

" tex

" tex=>ycCz

Compute the unique minimal solution

— this exists since solutions are closed under intersection

A cubic time algorithm exists!



The solver data structure

Each variable is mapped to a node in a DAG
Each node has a bitvector in {0,1}¢
— initially set to all O’s

Each bit has a list of pairs of variables

— used to model conditional constraints

The DAG edges model inclusion constraints

The bitvectors will at all times directly represent the
minimal solution to the constraints seen so far



An example graph

(X2’X4)

10



Adding constraints (1/2)

e Constraints of the form t € x:
— look up the node associated with x
— set the bit correspondingtotto 1

— if the list of pairs for t is not empty, then add the edges
corresponding to the pairs to the DAG

LMD o




* Constraints of theformte x =y c z:

Adding constraints (2/2)

— test if the bit corresponding to tis 1
— if so, add the DAG edge from y to z

— otherwise, add (y,z) to the list of pairs for t

&
&

t

1

- ©
- &

t

1

(¥,2)

)

12



Collapse cycles

* If a newly added edge forms a cycle:
— merge the nodes on the cycle into a single node
— form the union of the bitvectors
— concatenate the lists of pairs
— update the map from variables accordingly

13



Propagate bitvectors

* Propagate the values of all newly set bits along all
edges in the DAG

14



Time complexity

* The worst-case time bound is O(n3)

* This is known as the cubic time bottleneck:
— occurs in many different scenarios

— but O(n3/log n) is possible...

* A special case of general set constraints:

— defined on sets of terms instead of sets of tokens
— solvable in time 0(22")

16



Agenda

Control flow analysis for the
A-calculus

The cubic framework

Control flow analysis for TIP
with function pointers

Control flow analysis for
object-oriented languages

17



CFA for TIP with function pointers

* For a computed function call

E—ECE, .., E)

we cannot immediately see which function is called

* A coarse but sound approximation:
— assume any function with right number of arguments

* Use CFA to get a much better result!

18



CFA constraints (1/2)

Tokens are all functions {f,, f5, ..., fi}

For every AST node, v, we introduce the variable [v]
denoting the set of functions to which v may evaluate

For function definitions f(...) {... }:
felfl
For assignments x = E:

[E] < [IX]

19



CFA constraints (2/2)

* For direct function calls f(E,, ..., E,):
[E] < [[a] fori=1,...n A [ET] < [[fCE;, ..., ED]
where fis a function with arguments a,, ..., a,
and return expression E’

* For computed function calls ECE,, ..., E,):

f e[E] = ([E] < [a] for i=1,...n A [E] < [CE) CE;y ...y EDT)
for every function f with arguments a,, ..., a,

and return expression E’

— If we consider typable programs only:

only generate constraints for those functions f
for which the call would be type correct

20



Example program

inc(i) { return i+1; }
dec(j) { return j-1; }
ide(k) { return k; }

foo(n,f) {
var r;
if (n==0) { f=ide; }
r = f(n);
return r;

}
main() {

var x,y;

X = 1nput;

1if (x>0) { y = foo(x,inc); } else { y = foo(x,dec); }
return y;

21



Generated constraints

inc e [1nC]

dec € [dec]

1de e [1de]

[ide] < [f]

[FCIcr]

ince[fl=[n]ci]A[1+1] < [f(n)]

dec e [fl= [N c[J1A[3-1] < [F(n)]

ide € [f] = [n] = [K] A [k] = [f(n)]

[1nput] c [X]

[foo(x,inc)] c [yl

[foo(x,dec)] c [yl

foo e [foo]

foo e [foo] = [x] c [n] A[inc] c [f] A [f(n)] < [foo(x,1nc)]
foo € [foo] = [x] < [n] A [dec] c [f] A [f(n)] < [foo(x,dec)]
main € [main]

22



Least solution

[1nc] ={1nc}
[dec] = {dec}
[1de] ={1de}

1] = {inc, dec, ide)
[foo] = {foo}
[main] = {main}

With this information, we can construct the call edges
and return edges in the interprocedural CFG



Agenda

Control flow analysis for the
A-calculus

The cubic framework

Control flow analysis for TIP
with function pointers

Control flow analysis for
object-oriented languages

24



Simple CFA for OO0 (1/3)

CFA in an object-oriented language:
x.m(a,b,c)
Which method implementations may be invoked?

Full CFA is a possibility...
But the extra structure allows simpler solutions

25



Simple CFA for 00 (2/3)

* Simplest solution:

— select all methods named m with three arguments

e Class Hierarchy Analysis (CHA):

— consider only the part of the class hierarchy rooted
by the declared type of X

@ X

26



Simple CFA for OO0 (3/3)

e Rapid Type Analysis (RTA):

— restrict to those classes that are actually used in the program
in New expressions

* Variable Type Analysis (VTA):

— perform intraprocedural control flow analysis

27



