
Anders Møller & Michael I. Schwartzbach
Computer Science, Aarhus University

Static Program Analysis
Part 8 – control flow analysis

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Agenda

• Control flow analysis for the
l-calculus

• The cubic framework
• Control flow analysis for TIP

with function pointers
• Control flow analysis for

object-oriented languages

2

Control flow complications

• Function pointers in TIP complicate (Interprocedural)
CFG construction:
– several functions may be invoked at a call site
– this depends on the dataflow
– but dataflow analysis first requires a CFG

• Same situation for other features:
– higher-order functions (closures)
– a class hierarchy with objects and methods
– prototype objects with dynamic properties

3

Control flow analysis

• A control flow analysis approximates the CFG
– conservatively computes possible functions at call sites
– the trivial answer: all functions

• Control flow analysis is usually flow-insensitive:
– it is based on the AST
– the CFG is not available yet
– a subsequent dataflow analysis may use the CFG

• Alternative: use flow-sensitive analysis
– potentially on-the-fly, during dataflow analysis

4

CFA for the lambda calculus

• The pure lambda calculus

• Assume all l-bound variables are distinct
• An abstract closure lx abstracts the function lx.E

in all contexts (i.e., the values of free variables)
• Goal: for each call site E1E2 determine the possible

functions for E1 from the set {lx1, lx2, ..., lxn}
5

E ®lx.E (function definition)
| E1 E2 (function application)
| x (variable reference)

Closure analysis

A flow-insensitive analysis that tracks function values:

• For every AST node, v, we introduce a variable ⟦v⟧
ranging over subsets of abstract closures

• For lx.E we have the constraint
lx Î ⟦lx.E⟧

• For E1E2 we have the conditional constraint

lx Î ⟦E1⟧Þ (⟦E2⟧ Í ⟦x⟧ Ù ⟦E⟧ Í ⟦E1E2⟧)
for every function lx.E

6

Agenda

• Control flow analysis for the
l-calculus

• The cubic framework
• Control flow analysis for TIP

with function pointers
• Control flow analysis for

object-oriented languages

7

The cubic framework

• We have a set of tokens {t1, t2, ..., tk}
• We have a collection of variables {x1, ..., xn}

ranging over subsets of tokens
• A collection of constraints of these forms:

§ t Î x
§ t Î x Þ y Í z

• Compute the unique minimal solution
– this exists since solutions are closed under intersection

• A cubic time algorithm exists!
8

The solver data structure

• Each variable is mapped to a node in a DAG
• Each node has a bitvector in {0,1}k

– initially set to all 0’s

• Each bit has a list of pairs of variables
– used to model conditional constraints

• The DAG edges model inclusion constraints

• The bitvectors will at all times directly represent the
minimal solution to the constraints seen so far

9

An example graph

10

x1

x2

x3

x4

(x2,x4)

Adding constraints (1/2)

• Constraints of the form t Î x:
– look up the node associated with x
– set the bit corresponding to t to 1
– if the list of pairs for t is not empty, then add the edges

corresponding to the pairs to the DAG

11

0

(y,z)

x
t

1x
t

y

z

Adding constraints (2/2)

• Constraints of the form t Î x Þ y Í z:
– test if the bit corresponding to t is 1
– if so, add the DAG edge from y to z
– otherwise, add (y,z) to the list of pairs for t

12

0x
t

0

(y,z)

x
t

1x
t

1x
t

y
z

Collapse cycles

• If a newly added edge forms a cycle:
– merge the nodes on the cycle into a single node
– form the union of the bitvectors
– concatenate the lists of pairs
– update the map from variables accordingly

13

1 1 0 0 0 0

0 0 1 0 0 0

1 0 1 0 0 1

x

z

y 1 1 1 0 0 1x,y,z

(a,b)

(c,d)

(a,b)

(c,d)

Propagate bitvectors

• Propagate the values of all newly set bits along all
edges in the DAG

14

1

1

1

1

1

1

Time complexity

• The worst-case time bound is O(n3)

• This is known as the cubic time bottleneck:
– occurs in many different scenarios
– but O(n3/log n) is possible…

• A special case of general set constraints:
– defined on sets of terms instead of sets of tokens
– solvable in time O(22)n

16

Agenda

• Control flow analysis for the
l-calculus

• The cubic framework
• Control flow analysis for TIP

with function pointers
• Control flow analysis for

object-oriented languages

17

CFA for TIP with function pointers

• For a computed function call

we cannot immediately see which function is called

• A coarse but sound approximation:
– assume any function with right number of arguments

• Use CFA to get a much better result!

18

E ® E(E, ..., E)

CFA constraints (1/2)

• Tokens are all functions {f1, f2, ..., fk}
• For every AST node, v, we introduce the variable ⟦v⟧

denoting the set of functions to which v may evaluate

• For function definitions f(...){...}:
f Î ⟦f⟧

• For assignments x = E:
⟦E⟧ Í ⟦x⟧

19

CFA constraints (2/2)
• For direct function calls f(E1, ..., En):

⟦Ei⟧ Í ⟦ai⟧ for i=1,...,n Ù ⟦E’⟧ Í ⟦f(E1, ..., En)⟧
where f is a function with arguments a1, ..., an
and return expression E’

• For computed function calls E(E1, ..., En):

f Î⟦E⟧Þ (⟦Ei⟧ Í ⟦ai⟧ for i=1,...,n Ù ⟦E’⟧ Í ⟦(E)(E1, ..., En)⟧)
for every function f with arguments a1, ..., an

and return expression E’
– If we consider typable programs only:

only generate constraints for those functions f
for which the call would be type correct

20

Example program

21

inc(i) { return i+1; }
dec(j) { return j-1; }
ide(k) { return k; }

foo(n,f) {
var r;
if (n==0) { f=ide; }
r = f(n);
return r;

}

main() {
var x,y;
x = input;
if (x>0) { y = foo(x,inc); } else { y = foo(x,dec); }
return y;

}

Generated constraints

inc Î ⟦inc⟧
dec Î ⟦dec⟧
ide Î ⟦ide⟧
⟦ide⟧ Í ⟦f⟧
⟦f(n)⟧ Í ⟦r⟧
inc Î ⟦f⟧Þ ⟦n⟧ Í ⟦i⟧ Ù ⟦i+1⟧ Í ⟦f(n)⟧
dec Î ⟦f⟧Þ ⟦n⟧ Í ⟦j⟧ Ù ⟦j-1⟧ Í ⟦f(n)⟧
ide Î ⟦f⟧Þ ⟦n⟧ Í ⟦k⟧ Ù ⟦k⟧ Í ⟦f(n)⟧
⟦input⟧ Í ⟦x⟧
⟦foo(x,inc)⟧ Í ⟦y⟧
⟦foo(x,dec)⟧ Í ⟦y⟧
foo Î ⟦foo⟧
foo Î ⟦foo⟧Þ ⟦x⟧ Í ⟦n⟧ Ù ⟦inc⟧ Í ⟦f⟧ Ù ⟦f(n)⟧ Í ⟦foo(x,inc)⟧
foo Î ⟦foo⟧Þ ⟦x⟧ Í ⟦n⟧ Ù ⟦dec⟧ Í ⟦f⟧ Ù ⟦f(n)⟧ Í ⟦foo(x,dec)⟧
main Î ⟦main⟧

22

Least solution

⟦inc⟧ = {inc}
⟦dec⟧ = {dec}
⟦ide⟧ = {ide}
⟦f⟧ = {inc, dec, ide}
⟦foo⟧ = {foo}
⟦main⟧ = {main}

23

With this information, we can construct the call edges
and return edges in the interprocedural CFG

Agenda

• Control flow analysis for the
l-calculus

• The cubic framework
• Control flow analysis for TIP

with function pointers
• Control flow analysis for

object-oriented languages

24

Simple CFA for OO (1/3)

• CFA in an object-oriented language:

• Which method implementations may be invoked?

• Full CFA is a possibility...
• But the extra structure allows simpler solutions

25

x.m(a,b,c)

Simple CFA for OO (2/3)

• Simplest solution:
– select all methods named m with three arguments

• Class Hierarchy Analysis (CHA):
– consider only the part of the class hierarchy rooted

by the declared type of x

26

x

Simple CFA for OO (3/3)

• Rapid Type Analysis (RTA):
– restrict to those classes that are actually used in the program

in new expressions

• Variable Type Analysis (VTA):
– perform intraprocedural control flow analysis

27

x

