
Anders Møller & Michael I. Schwartzbach
Computer Science, Aarhus University

Static Program Analysis
Part 9 – pointer analysis

http://cs.au.dk/~amoeller/spa/

http://cs.au.dk/~amoeller/spa/

Agenda

• Introduction to points-to analysis
• Andersen’s analysis
• Steensgaards’s analysis
• Interprocedural points-to analysis
• Null pointer analysis
• Flow-sensitive points-to analysis

2

Analyzing programs with pointers
How do we perform e.g.
constant propagation analysis
when the programming language
has pointers?
(or object references?)

3

E ® &X
| alloc E
| *E
| null
| …

S ® *X = E;
| …

E ® E(E, ..., E)

...

*x = 42;

*y = -87;

z = *x;

// is z 42 or -87?

Heap pointers

• For simplicity, we ignore records
– alloc then only allocates a single cell
– only linear structures can be built in the heap

• Let’s at first also ignore function pointers
• We still have many interesting analysis challenges...

x

y

z

4

Pointer targets
• The fundamental question about pointers:

What locations can they point to?

• We need a suitable abstraction
• The set of (abstract) cells, Cells, contains
– alloc-i for each allocation site with index i
– X for each program variable named X

• This is called allocation site abstraction
• Each abstract cell may correspond to many

concrete memory cells at runtime

5

Points-to analysis

• Determine for each pointer variable X the set
pt(X) of the cells X may point to

• A conservative (“may points-to”) analysis:
– the set may be too large
– can show absence of aliasing: pt(X) Ç pt(Y) = Æ

• We’ll focus on flow-insensitive analyses:
– take place on the AST
– before or together with the control-flow analysis

6

...

*x = 42;

*y = -87;

z = *x;

// is z 42 or -87?

Obtaining points-to information

• An almost-trivial analysis (called address-taken):
– include all alloc-i cells
– include the X cell if the expression &X occurs in the program

• Improvement for a typed language:
– eliminate those cells whose types do not match

• This is sometimes good enough
– and clearly very fast to compute

7

Pointer normalization
• Assume that all pointer usage is normalized:
• X = alloc P where P is null or an integer constant
• X = &Y
• X = Y
• X = *Y
• *X = Y
• X = null

• Simply introduce lots of temporary variables…
• All sub-expressions are now named
• We choose to ignore the fact that the cells created at

variable declarations are uninitialized
8

Agenda

• Introduction to points-to analysis
• Andersen’s analysis
• Steensgaards’s analysis
• Interprocedural points-to analysis
• Null pointer analysis
• Flow-sensitive points-to analysis

9

Andersen’s analysis (1/2)

• For every cell c, introduce a constraint variable ⟦c⟧
ranging over sets of locations, i.e. ⟦·⟧: Cells →	2Cells

• Generate constraints:
• X = alloc P: alloc-i Î ⟦X⟧
• X = &Y: Y Î ⟦X⟧
• X = Y: ⟦Y⟧ Í ⟦X⟧
• X = *Y: αÎ⟦Y⟧Þ ⟦α⟧ Í ⟦X⟧ for each αÎCells
• *X = Y: αÎ⟦X⟧Þ ⟦Y⟧ Í ⟦α⟧ for each αÎCells
• X = null: (no constraints)

10

Andersen’s analysis (2/2)

• The points-to map is defined as:
pt(X) = ⟦X⟧

• The constraints fit into the cubic framework J

• Unique minimal solution in time O(n3)
• In practice, for Java: O(n2)

• The analysis is flow-insensitive but directional
– models the direction of the flow of values in assignments

11

Example program

12

var p,q,x,y,z;

p = alloc null;

x = y;

x = z;

*p = z;

p = q;

q = &y;

x = *p;

p = &z;

Applying Andersen

• Generated constraints:

• Smallest solution:
pt(p) = { alloc-1, y, z }
pt(q) = { y }

13

alloc-1 Î ⟦p⟧
⟦y⟧ Í ⟦x⟧
⟦z⟧ Í ⟦x⟧
α Î ⟦p⟧Þ ⟦z⟧ Í ⟦α⟧
⟦q⟧ Í ⟦p⟧
y Î ⟦q⟧
α Î ⟦p⟧Þ ⟦α⟧ Í ⟦x⟧
z Î ⟦p⟧

Agenda

• Introduction to points-to analysis
• Andersen’s analysis
• Steensgaards’s analysis
• Interprocedural points-to analysis
• Null pointer analysis
• Flow-sensitive points-to analysis

14

Steensgaard’s analysis
• View assignments as being bidirectional
• Generate constraints:
• X = alloc P: alloc-i Î ⟦X⟧
• X = &Y: YÎ ⟦X⟧
• X = Y: ⟦X⟧ = ⟦Y⟧
• X = *Y: αÎ⟦Y⟧Þ ⟦α⟧ = ⟦X⟧
• *X = Y: αÎ⟦X⟧Þ ⟦Y⟧ = ⟦α⟧

• Extra constraints:
t1,t2Î⟦t⟧Þ ⟦t1⟧ = ⟦t2⟧ and ⟦t1⟧ ∩ ⟦t2⟧ ≠ ÆÞ ⟦t1⟧ = ⟦t2⟧

(whenever a cell may point to two cells, they are effectively merged into one)

• Steensgaard’s original formulation uses conditional unification for X = Y:
αÎ⟦Y⟧Þ ⟦X⟧ = ⟦Y⟧ (avoids unifying if Y is never a pointer)

15

Steensgaard’s analysis
• Reformulate as term unification
• Generate constraints:
• X = alloc P: ⟦X⟧ = &⟦alloc-i⟧
• X = &Y: ⟦X⟧ = &⟦Y⟧
• X = Y: ⟦X⟧ = ⟦Y⟧
• X = *Y: ⟦Y⟧ = &α Ù ⟦X⟧ = α where α	is fresh
• *X = Y: ⟦X⟧ = &α Ù ⟦Y⟧ = α where α	is fresh

• Terms:
– term variables, e.g. ⟦X⟧, ⟦alloc-i⟧, α (each representing the possible values of a cell)
– a single (unary) term constructor &t			(representing the location of the cell that t represents)

– ⟦X⟧ is now a term variable, not a constraint variable holding a set of cells

• Fits with our unification solver! (union-find…)
• The points-to map is defined as pt(X) = { cÎCells | ⟦X⟧ = &⟦c⟧ }
• Note that there is only one kind of term constructor, so unification never fails16

Applying Steensgaard
• Generated constraints:

• Smallest solution:
pt(p) = { alloc-1, y, z }
pt(q) = { alloc-1, y, z }

17

alloc-1 Î ⟦p⟧
⟦y⟧ = ⟦x⟧
⟦z⟧ = ⟦x⟧
α Î ⟦p⟧Þ ⟦z⟧ = ⟦α⟧
⟦q⟧ = ⟦p⟧
y Î ⟦q⟧
α Î ⟦p⟧Þ ⟦α⟧ = ⟦x⟧
z Î ⟦p⟧
+ the extra constraints

Agenda

• Introduction to points-to analysis
• Andersen’s analysis
• Steensgaards’s analysis
• Interprocedural points-to analysis
• Null pointer analysis
• Flow-sensitive points-to analysis

21

Interprocedural points-to analysis

• If function pointers are distinct from heap pointers:
– first run a CFA
– then run Andersen or Steensgaard

• But in TIP both kinds may be mixed together:
(***x)(1,2,3)

• In this case the CFA and the points-to analysis must
happen simultaneously!

22

Function call normalization

• Assume that all function calls are of the form

x = y(a1, ..., an)

• y may be a variable whose value is a function pointer
• Assume that all return statements are of the form

return z;

• As usual, simply introduce lots of temporary variables…

• Include all function names in Cells
23

CFA with Andersen
• For the function call

x = y(a1, ..., an)
and every occurrence of

f(x1, ..., xn) { ... return z; }
add these constraints:

f Î ⟦f⟧

f Î ⟦y⟧Þ (⟦ai⟧ Í ⟦xi⟧ for i=1,...,n Ù ⟦z⟧ Í ⟦x⟧)

• (Similarly for simple function calls)
• Fits directly into the cubic framework!

24

Andersen’s analysis is already closely connected to control-flow analysis!

Agenda

• Introduction to points-to analysis
• Andersen’s analysis
• Steensgaards’s analysis
• Interprocedural points-to analysis
• Null pointer analysis
• Flow-sensitive points-to analysis

30

Null pointer analysis
• Decide for every dereference *p,

is p different from null?

• Use the monotone framework
– assuming that a points-to map pt has been computed

• Let us consider an intraprocedural analysis
(i.e. we ignore function calls)

31

A lattice for null analysis
• Define the simple lattice Null:

where NN represents “definitely not null”
and ? represents “maybe null”

• Use for every program point the map lattice:
Cells ® Null

?

NN

32

Setting up

• For every CFG node, v, we have a variable ⟦v⟧:
– a map giving abstract values for all cells

at the program point after v

• Auxiliary definition:

JOIN(v) = ⨆	⟦w⟧

(i.e. we make a forward analysis)

wÎpred(v)
v

w1

w2

wk

33

Null analysis constraints

• For operations involving pointers:
• X = alloc P: ⟦v⟧ = ???
• X = &Y: ⟦v⟧ = ???
• X = Y: ⟦v⟧ = ???
• X = *Y: ⟦v⟧ = ???
• *X = Y: ⟦v⟧ = ???
• X = null: ⟦v⟧ = ???

• For all other CFG nodes:
• ⟦v⟧ = JOIN(v)

34

Null analysis constraints
• For a heap store operation *X = Y we need to

model the change of whatever X points to
• That may be multiple abstract cells pointed to by X

(i.e. the cells pt(X))
• With the present abstraction, each abstract heap cell
alloc-i may describe multiple concrete cells

• So we settle for weak update:
*X = Y: ⟦v⟧ = store(JOIN(v), X, Y)

where store(s, X, Y) = s[α ↦ s(α) ⊔	s(Y)]
αÎpt(X)

35

Weak updates cannot “kill”
information flowing into a node

Null analysis constraints
• For a heap load operation X = *Y we need to

model the change of the program variable X
• Our abstraction has a single abstract cell for X
• That abstract cell represents a single concrete cell
• So we can use strong update:

X = *Y: ⟦v⟧ = load(JOIN(v), X, Y)

where load(s, X, Y) = s[X ↦⨆s(α)]
αÎpt(Y)

36

Strong updates can “kill”
information flowing into a node

Strong and weak updates

37

mk() {

return alloc null; // alloc-1

}

...

a = mk();

b = mk();

*a = alloc null; // alloc-2

n = null;

*b = n; // strong update here would be unsound!

c = *a;
is c null here?

The abstract cell alloc-1 corresponds to multiple concrete cells

Strong and weak updates

38

a = alloc null; // alloc-1

b = alloc null; // alloc-2

*a = alloc null; // alloc-3

*b = alloc null; // alloc-4

if (...) {

x = a;

} else {

x = b;

}

n = null;

*x = n; // strong update here would be unsound!

c = *x;
is c null here?

The points-to set for x contains multiple abstract cells

Null analysis constraints

• X = alloc P : ⟦v⟧ = JOIN(v)[X↦ NN, alloc-i↦	?]
• X = &Y: ⟦v⟧ = JOIN(v)[X↦ NN]
• X = Y: ⟦v⟧ = JOIN(v)[X↦ JOIN(v)(Y)]
• X = null: ⟦v⟧ = JOIN(v)[X↦ ?]

• In each case, the assignment modifies
a program variable each with a unique cell

• So we can use strong updates,
as for heap load operations

39

could be improved…

Strong and weak updates, revisited

• Strong update: s[c ↦ new-value]
– possible if c is known to refer to a single concrete cell
– works for assignments to local variables

(as long as TIP doesn’t have e.g. nested functions)

• Weak update: s[c ↦ s(c) ⊔ new-value]
– necessary if c may refer to multiple concrete cells
– bad for precision, we lose some of the power of

flow-sensitivity
– required for assignments to heap cells

(unless we extend the analysis abstraction!)

40

Interprocedural null analysis

• Context insensitive or context sensitive, as usual…
– at the after-call node, use the heap from the callee

• But be careful!
Pointers to local variables may escape to the callee
– the abstract state at the after-call node cannot simply copy

the abstract values for local variables from the abstract state
at the call node

41

⬚ = f(E1, ..., En);

result = E;

function f(b1, ..., bn)

x = ⬚

Using the null analysis

• The pointer dereference *p is “safe” at entry of v if
JOIN(v)(p) = NN

• The quality of the null analysis depends on the
quality of the underlying points-to analysis

42

Example program

Andersen generates:
pt(p) = {alloc-1}
pt(q) = {p}
pt(n) = Ø

43

p = alloc null;

q = &p;

n = null;

*q = n;

*p = n;

Generated constraints

44

⟦p=alloc null⟧ = ^[p↦ NN , alloc-1↦ ?]
⟦q=&p⟧ = ⟦p=alloc null⟧[q↦ NN]
⟦n=null⟧ = ⟦q=&p⟧[n↦ ?]
⟦*q=n⟧ = ⟦n=null⟧[p↦ ⟦n=null⟧(p) ⊔ ⟦n=null⟧(n)]
⟦*p=n⟧ = ⟦*q=n⟧[alloc-1↦ ⟦*q=n⟧(alloc-1) ⊔ ⟦*q=n⟧(n)]

Solution

⟦p=alloc null⟧ = [p↦ NN, q↦ NN, n↦ NN , alloc-1↦ ?]
⟦q=&p⟧ = [p↦ NN, q↦ NN, n↦ NN , alloc-1↦ ?]
⟦n=null⟧ = [p↦ NN, q↦ NN, n↦ ?, alloc-1↦ ?]
⟦*q=n⟧ = [p↦ ?, q↦ NN, n↦ ?, alloc-1↦ ?]
⟦*p=n⟧ = [p↦ ?, q↦ NN, n↦ ?, alloc-1↦ ?]

• At the program point before the statement *q=n
the analysis now knows that q is definitely non-null

• … and before *p=n, the pointer p is maybe null
• Due to the weak updates for all heap store operations,

precision is bad for alloc-i locations

45

Agenda

• Introduction to points-to analysis
• Andersen’s analysis
• Steensgaards’s analysis
• Interprocedural points-to analysis
• Null pointer analysis
• Flow-sensitive points-to analysis

46

Points-to graphs
• Graphs that describe possible heaps:
– nodes are abstract cells
– edges are possible pointers between the cells

• The lattice of points-to graphs is 2Cells´Cells

ordered under subset inclusion
(or alternatively, Cells →	2Cells)

• For every CFG node, v, we introduce a constraint
variable ⟦v⟧ describing the state after v

• Intraprocedural analysis (i.e. ignore function calls)

48

Constraints

• For pointer operations:
• X = alloc P: ⟦v⟧ = JOIN(v)¯XÈ { (X, alloc-i) }
• X = &Y: ⟦v⟧ = JOIN(v)¯XÈ { (X, Y) }
• X = Y: ⟦v⟧ = assign(JOIN(v), X, Y)
• X = *Y: ⟦v⟧ = load(JOIN(v), X, Y)
• *X = Y: ⟦v⟧ = store(JOIN(v), X, Y)
• X = null: ⟦v⟧ = JOIN(v)¯X

• For all other CFG nodes:
• ⟦v⟧ = JOIN(v)

49

Auxiliary functions

• JOIN(v) = ⋃⟦w⟧

• s¯X = { (s,t)Îs | s ¹ X}

• assign(s, X, Y) = s¯X ∪	 { (X, t) | (Y, t)Îs}

• load(s, X, Y) = s¯X ∪	 { (X, t) | (Y, s)Îs, (s, t)Îs}

• store(s, X, Y) = s ∪	{ (s, t) | (X, s)Îs, (Y, t)Îs}
– note: weak update!

wÎpred(v)

50

Example program

51

var x,y,n,p,q;
x = alloc null; y = alloc null;
*x = null; *y = y;
n = input;
while (n>0) {

p = alloc null; q = alloc null;
*p = x; *q = y;
x = p; y = q;
n = n-1;

}

Result of analysis

• After the loop we have this points-to graph:

• We conclude that x and y will always be disjoint

p

x

alloc-3

alloc-1

q

y

alloc-4

alloc-2

52

Points-to maps from points-to graphs

• A points-to map for each program point v:
pt(X) = { t | (X,t) Î ⟦v⟧ }

• More expensive, but more precise:
– Andersen: pt(x) = { y, z }
– flow-sensitive: pt(x) = { z }

53

x = &y;
x = &z;

Improving precision with
abstract counting

• The points-to graph is missing information:
– alloc-2 nodes always form a self-loop in the example

• We need a more detailed lattice:
2Cell´Cell ´ (Cell →	Count)

where we for each cell keep track of
how many concrete cells that abstract cell
describes

• This permits strong updates on those
that describe precisely 1 concrete cell

54

Count =

?

0 >1

^

1

Better results

• After the loop we have this extended points-to graph:

• Thus, alloc-2 nodes form a self-loop

1

56

p

x

alloc-3

alloc-1

q

y

alloc-4

alloc-2

1

??

Escape analysis

• Perform a points-to analysis
• Look at return expression
• Check reachability in the points-to

graph to arguments or variables
defined in the function itself

• None of those
ß

no escaping stack cells

61

baz() {
var x;
return &x;

}

main() {
var p;
p=baz();
*p=1;
return *p;

}

