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Analyzing programs with pointers

How do we perform e.g. E— &X
constant propagation analysis alloc E
when the programming language oy
has pointers?
(or object references?) null
S—> *X=E;

*X = 42; |

by = _87: B

2 = E—>ECE, ..., E)

// 1S z 42 or -877



Heap pointers

* For simplicity, we ignore records

— al loc then only allocates a single cell

— only linear structures can be built in the heap

X

oo

- 0—0—0—0—&

e Let’s at first also ignore function pointers

* We still have many interesting analysis challenges...



Pointer targets

The fundamental question about pointers:

What locations can they point to?

We need a suitable abstraction
The set of (abstract) cells, Cells, contains

— al loc-jfor each allocation site with index i
— X for each program variable named X

This is called allocation site abstraction

Each abstract cell may correspond to many
concrete memory cells at runtime



Points-to analysis

 Determine for each pointer variable X the set
pt(X) of the cells X may point to

*X = 42;
. . . *y = -87;
* A conservative (“may points-to”) analysis: , _ .
— the set may be too large £/

— can show absence of aliasing: pt(X) N pt(Y) =&

 WEe’ll focus on flow-insensitive analyses:
— take place on the AST
— before or together with the control-flow analysis



Obtaining points-to information

* An almost-trivial analysis (called address-taken):

— include allal loc-icells
— include the X cell if the expression &X occurs in the program

* Improvement for a typed language:

— eliminate those cells whose types do not match

* This is sometimes good enough

— and clearly very fast to compute



Pointer normalization

Assume that all pointer usage is normalized:

« X=alloc P wherePrisnull oran integer constant
« X=8&Y

« X=Y

« X=%*Y

¢ *X=Y

e X=null

Simply introduce lots of temporary variables...

All sub-expressions are now named

We choose to ignore the fact that the cells created at
variable declarations are uninitialized
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Andersen’s analysis (1/2)

* For every cell ¢, introduce a constraint variable [c]
ranging over sets of locations, i.e. [-]: Cells — 2¢¢ls

e Generate constraints:
e X=alloc P:

L
Y "

X=&Y:
X=Y:

alloc-ie [X]

Y € [X]

[Vl < [X1]

ac[Y] = [[a] < [X] for each aeCells
ac[X] = [Y] < [[a] for each aeCells

(no constraints)
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Andersen’s analysis (2/2)

The points-to map is defined as:
pt(X) = [X]

The constraints fit into the cubic framework ©
Unique minimal solution in time O(n3)

In practice, for Java: O(n?)

The analysis is flow-insensitive but directional

— models the direction of the flow of values in assignments
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Example program

Var p!q!X!y!Z;
p = alloc null;

X =Y,
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Applying Andersen

 Generated constraints:

Y €
a e
Z e

alloc-1 e [p]

[yl < [x]

[z] = [X]

a € [p] = [2] < [o]
[al < [P]

[a]
[P]

[P]

= [[a] < [X]

e Smallest solution:
pt(p)={alloc-1,y, z}
pt(d)={y}

13
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Steensgaard’s analysis

View assignments as being bidirectional

Generate constraints:

« X=alloc P: alloc-ie [X]

« X=4&Y: Y e [X]

« X=Y: [X] =[Y]

« X=7Y: ac[[Y] = [a] = [X]
¢« *X=Y: ac[X] = [Y] = [«]

Extra constraints:
t,6e(t] = [4l = [&] and [t,] n [[t,] # @ = [[t;] = [t,]

(whenever a cell may point to two cells, they are effectively merged into one)

Steensgaard’s original formulation uses conditional unification for X =Y:
ac[[Y] = [X] =[Y] (avoids unifying if Y is never a pointer)
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Steensgaard’s analysis

Reformulate as term unification

Generate constraints:

« X=alloc P: [X]

« X=4&Y: 1X]

e X=Y. 1X]

e X=7Y: [Y]

o FX=Y: 1X]
Terms:

=&[alloc-i]

=&[Y]

=[]

=&a A [X] =a where ais fresh
=&a A [Y] =a where ais fresh

— term variables, e.g. [X], [al 1oc-i], a (each representing the possible values of a cell)

— asingle (unary) term constructor &¢ (representing the location of the cell that t represents)

— [X] is now a term variable, not a constraint variable holding a set of cells

Fits with our unification solver! (union-find...)
The points-to map is defined as pt(X) ={ceCells | [X] = &[] }
Note that there is only one kind of term constructor, so unification never fails,,



Applying Steensgaard

 Generated constraints:

alloc-1 e [p]

Lyl = [X]

[2] = [X]

a € [p] = [z] = [a]
[a] = [P]

y € [d]
a € [p] = [of = [X]
z € [p]
+ the extra constraints

e Smallest solution:

pt(p)={alloc-1,y,z}
pt(q)={alloc-1,y,z}
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Interprocedural points-to analysis

* If function pointers are distinct from heap pointers:

— first run a CFA
— then run Andersen or Steensgaard

e Butin TIP both kinds may be mixed together:
(***X)(l,Z,B)

* |n this case the CFA and the points-to analysis must
happen simultaneously!
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Function call normalization

Assume that all function calls are of the form

x=y(a;y ..., a,)

y may be a variable whose value is a function pointer

Assume that all return statements are of the form

return z,
As usual, simply introduce lots of temporary variables...

Include all function names in Cells
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CFA with Andersen

For the function call Andersen

analysjs ;
/ VSIS s
X = y(01 y eey an) tafeady closely conn
O Control-f1,,,, ected
and every occurrence of analysjsy

f(xsy ..y x,) 1 ...returnz; }
add these constraints:

felfl
f < |Iy]] — ([[G,-]] C [[Xi]] for i=1,...,n A [[Z]] - [[X]])

(Similarly for simple function calls)

Fits directly into the cubic framework!
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Null pointer analysis

* Decide for every dereference *p,
is p different fromnul1?

e Use the monotone framework
— assuming that a points-to map pt has been computed

* Let us consider an intraprocedural analysis

(i.e. we ignore function calls)
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A lattice for null analysis

* Define the simple lattice Null:

?
|
NN

where NN represents “definitely not null”
and ? represents “maybe null”

e Use for every program point the map lattice:
Cells = Null
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Setting up

* For every CFG node, v, we have a variable [[v]:

— a map giving abstract values for all cells
at the program point after v

e Auxiliary definition:

JOIN(v) = LI [w]

wepred(v)

(i.e. we make a forward analysis)
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Null analysis constraints

* For operations involving pointers:

« X=alloc P: [v] = 2?7
¢ X=&Y: [v] = 2?7
¢ X=Y: V] = 277
o X= %Y V] = 277
o« FX=Y: V] = 277
e X=null: Iv] = 2?7

 For all other CFG nodes:
* [v] =JOIN(v)



Null analysis constraints

For a heap store operation *X =Y we need to
model the change of whatever X points to

That may be multiple abstract cells pointed to by X
(i.e. the cells pt(X))

With the present abstraction, each abstract heap cell

alloc-i may des vk undates cannot “kill”

So we settle for v information flowing into a node
X =Y [v] = store(JOIN(v), X, Y)

where store(o, X, Y) = ola +> o(a) U o(Y)]
acptX)
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Null analysis constraints

For a heap load operation X = *Y we need to
model the change of the program variable X

Our abstraction has a single abstract cell for X

That abstractce  Strong updates can “kill”
So we can use s information flowing into a node

X=7Y: [v] = load(JOIN(v), X, Y)

where load(c, X, Y) = o[X +» Lo(a)]
aecpt(Y)
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Strong and weak updates

mk() {
return alloc null;
}
a = mk(Q);
b = mk(Q);
*a = alloc null;
n = null;

*b = n; // strong update here would be unsound!
C = *a;

is C null here?

The abstract cell al loc-1 corresponds to multiple concrete cells
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Strong and weak updates

a = alloc null;
b = alloc null;
alloc null;
= alloc null;
(oo i
X = aj;
} else {
X = b;
}

n = null;

7's‘a
7':b
if

*X = Nn; // strong update here would be unsound!
C = *X;

is C null here?

The points-to set for X contains multiple abstract cells
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Null analysis constraints

X=alloc P: [v]=JOIN(V)X—NN,alloc-1-7?]

X = &Y: Tv] = JOIN(V)[X = NN] ) ;‘ ——
X=Y: [v] = JOIN(V)[X = JOIN(v)(Y)] i
X=null: [v] = JOIN(v)[X — ?]

In each case, the assignment modifies
a program variable each with a unique cell

So we can use strong updates,
as for heap load operations
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Strong and weak updates, revisited

e Strong update: o[c — new-value]
— possible if ¢ is known to refer to a single concrete cell

— works for assignments to local variables
(as long as TIP doesn’t have e.g. nested functions)

 Weak update: ofc+ ofc) U new-value]
— necessary if ¢ may refer to multiple concrete cells

— bad for precision, we lose some of the power of
flow-sensitivity

— required for assignments to heap cells
(unless we extend the analysis abstraction!)
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Interprocedural null analysis

* Context insensitive or context sensitive, as usual...

— at the after-call node, use the heap from the callee

e But be careful!
Pointers to local variables may escape to the callee

— the abstract state at the after-call node cannot simply copy
the abstract values for local variables from the abstract state
at the call node

function f(b1, .., bn)

S— z

X = i .l
o= [25
¥ N |
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Using the null analysis

* The pointer dereference *p is “safe” at entry of v if
JOIN(v)(p) = NN

* The quality of the null analysis depends on the
quality of the underlying points-to analysis
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Example program

alloc null;
&p;
= null;

- 3 3O O O
[l

Andersen generates:
pt(p) ={alloc-1}

pt(q) = {p}
pt(n) =@
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Generated constraints

[p=alloc null]=L[p~NN,alloc-1~ 7]

[9=&p] =
[n=null]
[*q=n] =
[#p=n] =

[p=alloc null][g~ NN]

= [q=&p]I[n = 7]
[n=null1][p = [n=null1](p) U [n=null](n)]

[*g=n][alloc-1w [*g=n](alloc-1) U [*q=n](n)]
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Solution

[p=alloc null]=[p~NN,g—=NN,n—>NN,alloc-1~ 7]
[g=&p] =[p~ NN,g—=NN,n—>NN,alloc-1+ 7]
[n=null]=[p~NN,g—~NN,n— 7, alloc-1- 7]
[*g=n]=[p~7,g~NN,n— 7, alloc-1- 7]
[*p=n]=[p~7,g~NN,n—7,alloc-1- 7]

* At the program point before the statement *qg=n
the analysis now knows that q is definitely non-null

e ...and before *p=n, the pointer p is maybe null

 Due to the weak updates for all heap store operations,
precision is bad for alloc-1i locations
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Points-to graphs

Graphs that describe possible heaps:
— nodes are abstract cells
— edges are possible pointers between the cells

The lattice of points-to graphs is 2CellsxCells

ordered under subset inclusion
(or alternatively, Cells — 2¢€/s)

For every CFG node, v, we introduce a constraint
variable [v] describing the state after v

Intraprocedural analysis (i.e. ignore function calls)
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Constraints

* For pointer operations:

« X=alloc P:
e X=4&Y:

e X=Y:

e X=%Y:

e *X=Y:

e X=null:

[v]
[v]
[V]
[v]
[v]

[v]

= JOIN(V)N XU { (X, alToc-i)}
= JOIN(VNXU { (X, Y) }

= assign(JOIN(v), X, Y)

= load(JOIN(v), X, Y)

= store(JOIN(v), X, Y)

= JOIN(V)¥ X

e For all other CFG nodes:

* [[v] =JOIN(v)
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Auxiliary functions

* JOIN(v) = U[w]

wepred(v)

e oiX={(st)ec | s=X}

e gssign(c, X, Y)=oiXU {(X t) | (Y, t)ec}

e Joad(c, X, Y)=oiXU {(X, t) | (Y,s)eo, (s, t)ec}

e store(o, X,Y)=cU{(s, t) | (X s)eo, (Y, t)ec}

— note: weak update!



Example program

var x,y,n,p,d;
11;

X = alloc null; y = alloc null;
*X = null; *y = vy;
n = 1nput;

while (n>0) {

p = a11oc nhull; g = alloc null;

*p = X; *q =Y;
X Py, Y = (,

n n-1;
}
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Result of analysis

* After the loop we have this points-to graph:

e | ]

alloc-1 a11®

* We conclude that X and y will always be disjoint
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Points-to maps from points-to graphs

e A points-to map for each program point v:
pt(X) = {t | (Xt) € [v] }

 More expensive, but more precise: X

— Andersen: pt(X)={y, z} X = &z;

— flow-sensitive: pt(X)={z} /
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Improving precision with
abstract counting

* The points-to graph is missing information:

— al loc-2 nodes always form a self-loop in the example

e We need a more detailed lattice:
2 CelixCell » (Cell - Count)

where we for each cell keep track of
how many concrete cells that abstract cell
describes
Count=0 1 >1
e This permits strong updates on those 7
that describe precisely 1 concrete cell 1
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Better results

» After the loop we have this extended points-to graph:

? ?
g:j;t> q a11;:j;\

Youni-Ygun

alloc-1 a112iig;>

* Thus, alloc-2 nodes form a self-loop




Escape analysis

Perform a points-to analysis baz() {
Look at return expression var X
P return &x;

Check reachability in the points-to  }
graph to arguments or variables

defined in the function itself main() {
var p;
p=baz();
None of those *p=1;
U return *p;
}

no escaping stack cells
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