Static Program Analysis
Part 9 — pointer analysis

http://cs.au.dk/~amoeller/spa/

Anders Mgller & Michael I. Schwartzbach
Computer Science, Aarhus University

http://cs.au.dk/~amoeller/spa/

Agenda

Introduction to points-to analysis
Andersen’s analysis
Steensgaards’s analysis
Interprocedural points-to analysis
Null pointer analysis
Flow-sensitive points-to analysis

Analyzing programs with pointers

How do we perform e.g. E— &X
constant propagation analysis alloc E
when the programming language oy
has pointers?
(or object references?) null
S—> *X=E;

*X = 42; |

by = _87: B

2 = E—>ECE, ..., E)

// 1S z 42 or -877

Heap pointers

* For simplicity, we ignore records

— al loc then only allocates a single cell

— only linear structures can be built in the heap

X

oo

- 0—0—0—0—&

e Let’s at first also ignore function pointers

* We still have many interesting analysis challenges...

Pointer targets

The fundamental question about pointers:

What locations can they point to?

We need a suitable abstraction
The set of (abstract) cells, Cells, contains

— al loc-jfor each allocation site with index i
— X for each program variable named X

This is called allocation site abstraction

Each abstract cell may correspond to many
concrete memory cells at runtime

Points-to analysis

 Determine for each pointer variable X the set
pt(X) of the cells X may point to

*X = 42;
. . . *y = -87;
* A conservative (“may points-to”) analysis: , _ .
— the set may be too large £/

— can show absence of aliasing: pt(X) N pt(Y) =&

 WEe’ll focus on flow-insensitive analyses:
— take place on the AST
— before or together with the control-flow analysis

Obtaining points-to information

* An almost-trivial analysis (called address-taken):

— include allal loc-icells
— include the X cell if the expression &X occurs in the program

* Improvement for a typed language:

— eliminate those cells whose types do not match

* This is sometimes good enough

— and clearly very fast to compute

Pointer normalization

Assume that all pointer usage is normalized:

« X=alloc P wherePrisnull oran integer constant
« X=8&Y

« X=Y

« X=%*Y

¢ *X=Y

e X=null

Simply introduce lots of temporary variables...

All sub-expressions are now named

We choose to ignore the fact that the cells created at
variable declarations are uninitialized

Agenda

Introduction to points-to analysis
Andersen’s analysis
Steensgaards’s analysis
Interprocedural points-to analysis
Null pointer analysis
Flow-sensitive points-to analysis

Andersen’s analysis (1/2)

* For every cell ¢, introduce a constraint variable [c]
ranging over sets of locations, i.e. [-]: Cells — 2¢¢ls

e Generate constraints:
e X=alloc P:

L
Y "

X=&Y:
X=Y:

alloc-ie [X]

Y € [X]

[Vl < [X1]

ac[Y] = [[a] < [X] for each aeCells
ac[X] = [Y] < [[a] for each aeCells

(no constraints)

10

Andersen’s analysis (2/2)

The points-to map is defined as:
pt(X) = [X]

The constraints fit into the cubic framework ©
Unique minimal solution in time O(n3)

In practice, for Java: O(n?)

The analysis is flow-insensitive but directional

— models the direction of the flow of values in assignments

11

Example program

Var p!q!X!y!Z;
p = alloc null;

X =Y,

12

Applying Andersen

 Generated constraints:

Y €
a e
Z e

alloc-1 e [p]

[yl < [x]

[z] = [X]

a € [p] = [2] < [o]
[al < [P]

[a]
[P]

[P]

= [[a] < [X]

e Smallest solution:
pt(p)={alloc-1,y, z}
pt(d)={y}

13

Agenda

Introduction to points-to analysis
Andersen’s analysis
Steensgaards’s analysis
Interprocedural points-to analysis
Null pointer analysis
Flow-sensitive points-to analysis

14

Steensgaard’s analysis

View assignments as being bidirectional

Generate constraints:

« X=alloc P: alloc-ie [X]

« X=4&Y: Y e [X]

« X=Y: [X] =[Y]

« X=7Y: ac[[Y] = [a] = [X]
¢« *X=Y: ac[X] = [Y] = [«]

Extra constraints:
t,6e(t] = [4l = [&] and [t,] n [[t,] # @ = [[t;] = [t,]

(whenever a cell may point to two cells, they are effectively merged into one)

Steensgaard’s original formulation uses conditional unification for X =Y:
ac[[Y] = [X] =[Y] (avoids unifying if Y is never a pointer)

15

Steensgaard’s analysis

Reformulate as term unification

Generate constraints:

« X=alloc P: [X]

« X=4&Y: 1X]

e X=Y. 1X]

e X=7Y: [Y]

o FX=Y: 1X]
Terms:

=&[alloc-i]

=&[Y]

=[]

=&a A [X] =a where ais fresh
=&a A [Y] =a where ais fresh

— term variables, e.g. [X], [al 1oc-i], a (each representing the possible values of a cell)

— asingle (unary) term constructor &¢ (representing the location of the cell that t represents)

— [X] is now a term variable, not a constraint variable holding a set of cells

Fits with our unification solver! (union-find...)
The points-to map is defined as pt(X) ={ceCells | [X] = &[] }
Note that there is only one kind of term constructor, so unification never fails,,

Applying Steensgaard

 Generated constraints:

alloc-1 e [p]

Lyl = [X]

[2] = [X]

a € [p] = [z] = [a]
[a] = [P]

y € [d]
a € [p] = [of = [X]
z € [p]
+ the extra constraints

e Smallest solution:

pt(p)={alloc-1,y,z}
pt(q)={alloc-1,y,z}

17

Agenda

Introduction to points-to analysis
Andersen’s analysis
Steensgaards’s analysis
Interprocedural points-to analysis
Null pointer analysis
Flow-sensitive points-to analysis

21

Interprocedural points-to analysis

* If function pointers are distinct from heap pointers:

— first run a CFA
— then run Andersen or Steensgaard

e Butin TIP both kinds may be mixed together:
(***X)(l,Z,B)

* |n this case the CFA and the points-to analysis must
happen simultaneously!

22

Function call normalization

Assume that all function calls are of the form

x=y(a;y ..., a,)

y may be a variable whose value is a function pointer

Assume that all return statements are of the form

return z,
As usual, simply introduce lots of temporary variables...

Include all function names in Cells

23

CFA with Andersen

For the function call Andersen

analysjs ;
/ VSIS s
X = y(01 y eey an) tafeady closely conn
O Control-f1,,,, ected
and every occurrence of analysjsy

f(xsy ..y x,) 1 ...returnz; }
add these constraints:

felfl
f < |Iy]] — ([[G,-]] C [[Xi]] for i=1,...,n A [[Z]] - [[X]])

(Similarly for simple function calls)

Fits directly into the cubic framework!

24

Agenda

Introduction to points-to analysis
Andersen’s analysis
Steensgaards’s analysis
Interprocedural points-to analysis
Null pointer analysis
Flow-sensitive points-to analysis

30

Null pointer analysis

* Decide for every dereference *p,
is p different fromnul1?

e Use the monotone framework
— assuming that a points-to map pt has been computed

* Let us consider an intraprocedural analysis

(i.e. we ignore function calls)

31

A lattice for null analysis

* Define the simple lattice Null:

?
|
NN

where NN represents “definitely not null”
and ? represents “maybe null”

e Use for every program point the map lattice:
Cells = Null

32

Setting up

* For every CFG node, v, we have a variable [[v]:

— a map giving abstract values for all cells
at the program point after v

e Auxiliary definition:

JOIN(v) = LI [w]

wepred(v)

(i.e. we make a forward analysis)

33

Null analysis constraints

* For operations involving pointers:

« X=alloc P: [v] = 2?7
¢ X=&Y: [v] = 2?7
¢ X=Y: V] = 277
o X= %Y V] = 277
o« FX=Y: V] = 277
e X=null: Iv] = 2?7

 For all other CFG nodes:
* [v] =JOIN(v)

Null analysis constraints

For a heap store operation *X =Y we need to
model the change of whatever X points to

That may be multiple abstract cells pointed to by X
(i.e. the cells pt(X))

With the present abstraction, each abstract heap cell

alloc-i may des vk undates cannot “kill”

So we settle for v information flowing into a node
X =Y [v] = store(JOIN(v), X, Y)

where store(o, X, Y) = ola +> o(a) U o(Y)]
acptX)

35

Null analysis constraints

For a heap load operation X = *Y we need to
model the change of the program variable X

Our abstraction has a single abstract cell for X

That abstractce Strong updates can “kill”
So we can use s information flowing into a node

X=7Y: [v] = load(JOIN(v), X, Y)

where load(c, X, Y) = o[X +» Lo(a)]
aecpt(Y)

36

Strong and weak updates

mk() {
return alloc null;
}
a = mk(Q);
b = mk(Q);
*a = alloc null;
n = null;

*b = n; // strong update here would be unsound!
C = *a;

is C null here?

The abstract cell al loc-1 corresponds to multiple concrete cells

37

Strong and weak updates

a = alloc null;
b = alloc null;
alloc null;
= alloc null;
(oo i
X = aj;
} else {
X = b;
}

n = null;

7's‘a
7':b
if

*X = Nn; // strong update here would be unsound!
C = *X;

is C null here?

The points-to set for X contains multiple abstract cells

38

Null analysis constraints

X=alloc P: [v]=JOIN(V)X—NN,alloc-1-7?]

X = &Y: Tv] = JOIN(V)[X = NN]) ;‘ ——
X=Y: [v] = JOIN(V)[X = JOIN(v)(Y)] i
X=null: [v] = JOIN(v)[X — ?]

In each case, the assignment modifies
a program variable each with a unique cell

So we can use strong updates,
as for heap load operations

39

Strong and weak updates, revisited

e Strong update: o[c — new-value]
— possible if ¢ is known to refer to a single concrete cell

— works for assignments to local variables
(as long as TIP doesn’t have e.g. nested functions)

 Weak update: ofc+ ofc) U new-value]
— necessary if ¢ may refer to multiple concrete cells

— bad for precision, we lose some of the power of
flow-sensitivity

— required for assignments to heap cells
(unless we extend the analysis abstraction!)

40

Interprocedural null analysis

* Context insensitive or context sensitive, as usual...

— at the after-call node, use the heap from the callee

e But be careful!
Pointers to local variables may escape to the callee

— the abstract state at the after-call node cannot simply copy
the abstract values for local variables from the abstract state
at the call node

function f(b1, .., bn)

S— z

X = i .l
o= [25
¥ N |

41

Using the null analysis

* The pointer dereference *p is “safe” at entry of v if
JOIN(v)(p) = NN

* The quality of the null analysis depends on the
quality of the underlying points-to analysis

42

Example program

alloc null;
&p;
= null;

- 3 3O O O
[l

Andersen generates:
pt(p) ={alloc-1}

pt(q) = {p}
pt(n) =@

43

Generated constraints

[p=alloc null]=L[p~NN,alloc-1~ 7]

[9=&p] =
[n=null]
[*q=n] =
[#p=n] =

[p=alloc null][g~ NN]

= [q=&p]I[n = 7]
[n=null1][p = [n=null1](p) U [n=null](n)]

[*g=n][alloc-1w [*g=n](alloc-1) U [*q=n](n)]

44

Solution

[p=alloc null]=[p~NN,g—=NN,n—>NN,alloc-1~ 7]
[g=&p] =[p~ NN,g—=NN,n—>NN,alloc-1+ 7]
[n=null]=[p~NN,g—~NN,n— 7, alloc-1- 7]
[*g=n]=[p~7,g~NN,n— 7, alloc-1- 7]
[*p=n]=[p~7,g~NN,n—7,alloc-1- 7]

* At the program point before the statement *qg=n
the analysis now knows that q is definitely non-null

e ...and before *p=n, the pointer p is maybe null

 Due to the weak updates for all heap store operations,
precision is bad for alloc-1i locations

45

Agenda

Introduction to points-to analysis
Andersen’s analysis
Steensgaards’s analysis
Interprocedural points-to analysis
Null pointer analysis
Flow-sensitive points-to analysis

46

Points-to graphs

Graphs that describe possible heaps:
— nodes are abstract cells
— edges are possible pointers between the cells

The lattice of points-to graphs is 2CellsxCells

ordered under subset inclusion
(or alternatively, Cells — 2¢€/s)

For every CFG node, v, we introduce a constraint
variable [v] describing the state after v

Intraprocedural analysis (i.e. ignore function calls)

48

Constraints

* For pointer operations:

« X=alloc P:
e X=4&Y:

e X=Y:

e X=%Y:

e *X=Y:

e X=null:

[v]
[v]
[V]
[v]
[v]

[v]

= JOIN(V)N XU { (X, alToc-i)}
= JOIN(VNXU { (X, Y) }

= assign(JOIN(v), X, Y)

= load(JOIN(v), X, Y)

= store(JOIN(v), X, Y)

= JOIN(V)¥ X

e For all other CFG nodes:

* [[v] =JOIN(v)

49

Auxiliary functions

* JOIN(v) = U[w]

wepred(v)

e oiX={(st)ec | s=X}

e gssign(c, X, Y)=oiXU {(X t) | (Y, t)ec}

e Joad(c, X, Y)=oiXU {(X, t) | (Y,s)eo, (s, t)ec}

e store(o, X,Y)=cU{(s, t) | (X s)eo, (Y, t)ec}

— note: weak update!

Example program

var x,y,n,p,d;
11;

X = alloc null; y = alloc null;
*X = null; *y = vy;
n = 1nput;

while (n>0) {

p = a11oc nhull; g = alloc null;

*p = X; *q =Y;
X Py, Y = (,

n n-1;
}

51

Result of analysis

* After the loop we have this points-to graph:

e |]

alloc-1 a11®

* We conclude that X and y will always be disjoint

52

Points-to maps from points-to graphs

e A points-to map for each program point v:
pt(X) = {t | (Xt) € [v] }

 More expensive, but more precise: X

— Andersen: pt(X)={y, z} X = &z;

— flow-sensitive: pt(X)={z} /

53

Improving precision with
abstract counting

* The points-to graph is missing information:

— al loc-2 nodes always form a self-loop in the example

e We need a more detailed lattice:
2 CelixCell » (Cell - Count)

where we for each cell keep track of
how many concrete cells that abstract cell
describes
Count=0 1 >1
e This permits strong updates on those 7
that describe precisely 1 concrete cell 1

54

Better results

» After the loop we have this extended points-to graph:

? ?
g:j;t> q a11;:j;\

Youni-Ygun

alloc-1 a112iig;>

* Thus, alloc-2 nodes form a self-loop

Escape analysis

Perform a points-to analysis baz() {
Look at return expression var X
P return &x;

Check reachability in the points-to }
graph to arguments or variables

defined in the function itself main() {
var p;
p=baz();
None of those *p=1;
U return *p;
}

no escaping stack cells

61

